Improving Long-term Outcomes

Long-term use of calcineurin inhibitors (CNIs) has been linked to nephrotoxicity and renal impairment. The current goals of immunosuppressive schedules are to maintain long-term efficacy, but also to reduce CNI-related toxicities (De Simone et al., 2017b). The addition of agents such as mycophenolate mofetil and the mTOR inhibitors have enabled the development of CNI-sparing regimens that maintain immunosuppression while lowering cardiovascular and renal toxicities compared with standard CNI regimens.

To achieve optimal immunosuppression while minimising adverse events, it is necessary to tailor the immunosuppressive schedule to the individual patient. This has typically been achieved using one of two strategies (De Simone et al., 2017b):

  1. upfront strategies: Immunosuppressive regimen selected based on the pre-transplant and/or intraoperative risk factors
  2. downstream strategies: Immunosuppressive regimens are modified to address adverse events.

Upfront strategies

The development of upfront strategies is based on evidence from prospective randomised trials outlining triple or quadruple schedules that reduce CNI exposure through addition of induction therapy, antimetabolites, mTOR inhibitors and corticosteroids. However, the optimal choice of immunosuppressive regimen in upfront strategies is still uncertain. For instance, while the benefits of CNI elimination appears clear, in practice this has proven difficult and increased risks of acute rejection have been observed. Meanwhile, reducing the exposure of CNI has been achieved with triple and quadruple immunosuppressive regimens, but consensus is still lacking on what therapies are optimal for this role. While quadruple strategies allow for staggering of CNI introduction and short-term improvements in renal function, their long-term superiority over triple therapy regimens remains uncertain. Meanwhile, early addition of everolimus (4 weeks) offers the possibility of long-term reduction in CNI exposure and even the potential for CNI tapering and withdrawal (De Simone et al., 2017b).

Table 2: Upfront immunosuppressive strategies to minimise CNI-related adverse events (De Simone et al., 2017b)
Schedule Drugs Advantages

Quadruple

CNI, MMF/MPA, basiliximab, corticosteroids

Delay CNI introduction, reduce deterioration of renal function, potential for better CV and metabolic profile

Triple

CNI, MMF/MPA, corticosteroids

Reduce deterioration of renal function

mTOR inhibitors

CNI, MMF/MPA, corticosteroids, mTOR inhibitor (at 4 weeks with MMF/MPA elimination

Reduce deterioration of renal function, potential for prevention of post-transplant malignancies

mTOR inhibitors

CNI, MMF/MPA, corticosteroids, basiliximab, mTOR inhibitor (at 4 weeks with MMF/MPA elimination and CNI tapering between 8–16 weeks post-transplant

Reduce deterioration of renal function, potential for prevention of post-transplant malignancies

mTOR inhibitors

CNI, MMF/MPA, corticosteroids, basiliximab, mTOR inhibitor (at 4 weeks with MMF/MPA and CNI tapering between 4–16 weeks post-transplant

Reduce deterioration of renal function, potential for prevention of post-transplant malignancies

Downstream strategies

Downstream immunosuppressive modifications are more frequently implemented in clinical practice than upfront strategies and typically involve CNI replacement and immunosuppression withdrawal. The goal of these manipulations is typically to reduce the overall immunosuppressive burden, restore some immune function or to address treatment-related toxicities.

Immunosuppression withdrawal

Complete withdrawal of immunosuppression offers the opportunity to spare treatment-related toxicities and adverse events, but questions remain over its feasibility, safety and identification of candidates. The best predictor of withdrawal tolerance after liver transplantation appears to be time. Nearly 80% of patients who had survived over 10 years post-transplant were able to successfully withdraw, however, this dropped to 0% in patients less than 6 years since liver transplantation and who were under 49 years of age. Meanwhile, the benefits of withdrawal remain unclear with little improvement in CNI-related side effects, possibly due to the long period of exposure required before withdrawal is possible (De Simone et al., 2017b).

CNI replacement

The replacement of CNI has been demonstrated with conversion of patients to monotherapy with or a mTOR inhibitor. No head-to-head studies are available for MMF and mTOR inhibitor monotherapy, but data suggest that mTOR inhibitor monotherapy can be achieved at a shorter interval since transplantation that MMF monotherapy. MMF monotherapy was typically performed in recipients >3 years after transplantation and about 75% of patients achieve an absence of acute rejection with success principally dependent on time since transplantation, lower baseline CNI exposure and lower frequency of tacrolimus use. The success of mTOR inhibitor was also largely dependent on time since transplantation but the risk of acute rejection appears to be less than 10% (De Simone et al., 2017b).

Biomarkers and transplantation

Development and the application of non-invasive biomarkers which are able to predict the likelihood of graft rejection would limit the need for invasive biopsies (Khan et al., 2016). There has been significant recent progress in the identification of biomarkers for immune tolerance in renal and liver transplantation which would limit, or eradicate, the use of immunosuppression (Mastoridis et al., 2016).

Recently, a set of 13 genes was identified which were independently predictive for the development of fibrosis at 1 year in kidney transplant recipients. The predictive value of the gene set was validated on an independent cohort from the Genomics of Chronic Allograft Rejection (GoCAR) study (n=45) and two independent, publicly-available expression datasets (n=306) (O'Connell et al., 2016).

Liver transplantation

As around two-thirds of deaths after the first year following liver transplantation are unrelated to graft dysfunction, the causes need to be addressed to improve long-term outcomes. These include obesity and metabolic syndrome, hepatitis C infection, and malignancy – which has a distinctive spectrum in liver transplant recipients. Regular screening for metabolic syndrome and malignancies needs to be performed. In addition, the minimum degree of immunosuppression required to achieve optimal allograft function needs continued research (Bhat et al., 2014; Charlton, 2014).