Data from FDA - Curated by Toby Galbraith - Last updated 02 September 2017

Indication(s)

INDICATIONS AND USAGE Venlafaxine tablets, USP are indicated for the treatment of major depressive disorder. The efficacy of venlafaxine tablets, USP in the treatment of major depressive disorder was established in 6 week controlled trials of adult outpatients whose diagnoses corresponded most closely to the DSM-III or DSM-III-R category of major depression and in a 4 week controlled trial of inpatients meeting diagnostic criteria for major depression with melancholia (see CLINICAL TRIALS ). A major depressive episode implies a prominent and relatively persistent depressed or dysphoric mood that usually interferes with daily functioning (nearly every day for at least 2 weeks); it should include at least 4 of the following 8 symptoms: change in appetite, change in sleep, psychomotor agitation or retardation, loss of interest in usual activities or decrease in sexual drive, increased fatigue, feelings of guilt or worthlessness, slowed thinking or impaired concentration, and a suicide attempt or suicidal ideation. The efficacy of venlafaxine hydrochloride extended-release capsules in maintaining an antidepressant response for up to 26 weeks following 8 weeks of acute treatment was demonstrated in a placebo-controlled trial. The efficacy of venlafaxine tablets in maintaining an antidepressant response in patients with recurrent depression who had responded and continued to be improved during an initial 26 weeks of treatment and were then followed for a period of up to 52 weeks was demonstrated in a second placebo-controlled trial (see CLINICAL TRIALS ). Nevertheless, the physician who elects to use venlafaxine tablets/venlafaxine hydrochloride extended-release capsules for extended periods should periodically re-evaluate the long-term usefulness of the drug for the individual patient.

Learning Zones

An epgonline.org Learning Zone (LZ) is an area of the site dedicated to providing detailed self-directed medical education about a disease, condition or procedure.

Acute and Advanced Heart Failure

What are the most effective treatments for acute heart failure? Can you define advanced heart failure? Discover here...

Visit Acute and Advanced Heart Failure

Allergic Rhinitis

Allergic rhinitis causes great strain on the workforce. Help to reduce sick days and improve productivity with appropriate treatment options.

Visit Allergic Rhinitis

Related Content

Advisory information

contraindications
CONTRAINDICATIONS Hypersensitivity to venlafaxine hydrochloride or to any excipients in the formulation. The use of MAOIs intended to treat psychiatric disorders with venlafaxine tablets or within 7 days of stopping treatment with venlafaxine tablets is contraindicated because of an increased risk of serotonin syndrome. The use of venlafaxine tablets within 14 days of stopping an MAOI intended to treat psychiatric disorders is also contraindicated (see WARNINGS and DOSAGE AND ADMINISTRATION ). Starting venlafaxine tablets in a patient who is being treated with MAOIs such as linezolid or intravenous methylene blue is also contraindicated because of an increased risk of serotonin syndrome (see WARNINGS and DOSAGE AND ADMINISTRATION ).
Special warnings and precautions
PRECAUTIONS General Discontinuation of Treatment with Venlafaxine Tablets Discontinuation symptoms have been systematically evaluated in patients taking venlafaxine, to include prospective analyses of clinical trials in Generalized Anxiety Disorder and retrospective surveys of trials in major depressive disorder. Abrupt discontinuation or dose reduction of venlafaxine at various doses has been found to be associated with the appearance of new symptoms, the frequency of which increased with increased dose level and with longer duration of treatment. Reported symptoms include agitation, anorexia, anxiety, confusion, impaired coordination and balance, diarrhea, dizziness, dry mouth, dysphoric mood, fasciculation, fatigue, flu-like symptoms, headaches, hypomania, insomnia, nausea, nervousness, nightmares, sensory disturbances (including shock-like electrical sensations), somnolence, sweating, tremor, vertigo, and vomiting. During marketing of venlafaxine tablets, other SNRIs (Serotonin and Norepinephrine Reuptake Inhibitors), and SSRIs (Selective Serotonin Reuptake Inhibitors), there have been spontaneous reports of adverse events occurring upon discontinuation of these drugs, particularly when abrupt, including the following: dysphoric mood, irritability, agitation, dizziness, sensory disturbances (e.g. paresthesias such as electric shock sensations), anxiety, confusion, headache, lethargy, emotional lability, insomnia, hypomania, tinnitus, and seizures. While these events are generally self-limiting, there have been reports of serious discontinuation symptoms. Patients should be monitored for these symptoms when discontinuing treatment with venlafaxine tablets. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate (see DOSAGE AND ADMINISTRATION ). Anxiety and Insomnia Treatment-emergent anxiety, nervousness, and insomnia were more commonly reported for venlafaxine-treated patients compared to placebo-treated patients in a pooled analysis of short-term, doubleblind, placebo-controlled depression studies: Venlafaxine Placebo Symptom n=1033 n = 609 Anxiety 6% 3% Nervousness 13% 6% Insomnia 18% 10% Anxiety, nervousness, and insomnia led to drug discontinuation in 2%, 2%, and 3%, respectively, of the patients treated with venlafaxine in the Phase 2 and Phase 3 depression studies. Changes in Weight Adult Patients: A dose-dependent weight loss was noted in patients treated with venlafaxine for several weeks. A loss of 5% or more of body weight occurred in 6% of patients treated with venlafaxine compared with 1% of patients treated with placebo and 3% of patients treated with another antidepressant. However, discontinuation for weight loss associated with venlafaxine was uncommon (0.1% of venlafaxine-treated patients in the Phase 2 and Phase 3 depression trials). The safety and efficacy of venlafaxine therapy in combination with weight loss agents, including phentermine, have not been established. Coadministration of venlafaxine tablets and weight loss agents is not recommended. Venlafaxine tablets are not indicated for weight loss alone or in combination with other products. Pediatric Patients Weight loss has been observed in pediatric patients (ages 6 to 17) receiving venlafaxine hydrochloride extended-release capsules. In a pooled analysis of four eight week, doubleblind, placebo-controlled, flexible dose outpatient trials for major depressive disorder (MDD) and generalized anxiety disorder (GAD), venlafaxine hydrochloride extended-release capsules-treated patients lost an average of 0.45 kg (n = 333), while placebo-treated patients gained an average of 0.77 kg (n = 333). More patients treated with venlafaxine hydrochloride extended-release capsules than with placebo experienced a weight loss of at least 3.5% in both the MDD and the GAD studies (18% of venlafaxine hydrochloride extended-release capsules-treated patients vs. 3.6% of placebo-treated patients; p < 0.001). Weight loss was not limited to patients with treatment-emergent anorexia (see PRECAUTIONS, General, Changes in Appetite ). The risks associated with longer-term venlafaxine hydrochloride extended-release capsules use were assessed in an open-label study of children and adolescents who received venlafaxine hydrochloride extended-release capsules for up to six months. The children and adolescents in the study had increases in weight that were less than expected based on data from age- and sex-matched peers. The difference between observed weight gain and expected weight gain was larger for children (< 12 years old) than for adolescents (> 12 years old). Changes in Height Pediatric Patients: During the eight week placebo-controlled GAD studies, venlafaxine hydrochloride extended-release capsules-treated patients (ages 6 to 17) grew an average of 0.3 cm (n = 122), while placebo-treated patients grew an average of 1 cm (n = 132); p=0.041. This difference in height increase was most notable in patients younger than twelve. During the eight week placebo-controlled MDD studies, venlafaxine hydrochloride extended-release capsules-treated patients grew an average of 0.8 cm (n = 146), while placebo-treated patients grew an average of 0.7 cm (n = 147). In the six month open-label study, children and adolescents had height increases that were less than expected based on data from age- and sex-matched peers. The difference between observed growth rates and expected growth rates was larger for children (< 12 years old) than for adolescents (> 12 years old). Changes in Appetite Adult Patients: Treatment-emergent anorexia was more commonly reported for venlafaxine-treated (11%) than placebo-treated patients (2%) in the pool of short-term, doubleblind, placebo-controlled depression studies. Pediatric Patients Decreased appetite has been observed in pediatric patients receiving venlafaxine hydrochloride extended-release capsules. In the placebo-controlled trials for GAD and MDD, 10% of patients aged 6 to 17 treated with venlafaxine hydrochloride extended-release capsules for up to eight weeks and 3% of patients treated with placebo reported treatment-emergent anorexia (decreased appetite). None of the patients receiving venlafaxine hydrochloride extended-release capsules discontinued for anorexia or weight loss. Activation of Mania/Hypomania During Phase 2 and Phase 3 trials, hypomania or mania occurred in 0.5% of patients treated with venlafaxine. Activation of mania/hypomania has also been reported in a small proportion of patients with major affective disorder who were treated with other marketed antidepressants. As with all antidepressants, venlafaxine tablets should be used cautiously in patients with a history of mania. Hyponatremia Hyponatremia may occur as a result of treatment with SSRIs and SNRIs, including venlafaxine tablets. In many cases, this hyponatremia appears to be the result of the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Cases with serum sodium lower than 110 mmol/L have been reported. Elderly patients may be at greater risk of developing hyponatremia with SSRIs and SNRIs. Also, patients taking diuretics or who are otherwise volume depleted may be at greater risk (see PRECAUTIONS, Geriatric Use ). Discontinuation of venlafaxine tablets should be considered in patients with symptomatic hyponatremia and appropriate medical intervention should be instituted. Signs and symptoms of hyponatremia include headache, difficulty concentrating, memory impairment, confusion, weakness, and unsteadiness, which may lead to falls. Signs and symptoms associated with more severe and/or acute cases have included hallucination, syncope, seizure, coma, respiratory arrest, and death. Seizures During premarketing testing, seizures were reported in 0.26% (8/3082) of venlafaxine-treated patients. Most seizures (5 of 8) occurred in patients receiving doses of 150 mg/day or less. Venlafaxine tablets should be used cautiously in patients with a history of seizures. It should be discontinued in any patient who develops seizures. Abnormal Bleeding SSRIs and SNRIs, including venlafaxine, may increase the risk of bleeding events. Concomitant use of aspirin, nonsteroidal anti-inflammatory drugs, warfarin, and other anti-coagulants may add to this risk. Case reports and epidemiological studies (case-control and cohort design) have demonstrated an association between use of drugs that interfere with serotonin reuptake and the occurrence of gastrointestinal bleeding. Bleeding events related to SSRIs and SNRIs use have ranged from ecchymoses, hematomas, epistaxis, and petechiae to life-threatening hemorrhages. Patients should be cautioned about the risk of bleeding associated with the concomitant use of venlafaxine tablets and NSAIDs, aspirin, or other drugs that affect coagulation. Serum Cholesterol Elevation Clinically relevant increases in serum cholesterol were recorded in 5.3% of venlafaxine-treated patients and 0% of placebo-treated patients treated for at least 3 months in placebo-controlled trials (see ADVERSE REACTIONS – Laboratory Changes) Measurement of serum cholesterol levels should be considered during long-term treatment. Interstitial Lung Disease and Eosinophilic Pneumonia Interstitial lung disease and eosinophilic pneumonia associated with venlafaxine therapy have been rarely reported. The possibility of these adverse events should be considered in venlafaxine-treated patients who present with progressive dyspnea, cough or chest discomfort. Such patients should undergo a prompt medical evaluation and discontinuation of venlafaxine therapy should be considered. Use in Patients with Concomitant Illness Clinical experience with venlafaxine tablets in patients with concomitant systemic illness is limited. Caution is advised in administering venlafaxine tablets to patients with diseases or conditions that could affect hemodynamic responses or metabolism. Venlafaxine tablets have not been evaluated or used to any appreciable extent in patients with a recent history of myocardial infarction or unstable heart disease. Patients with these diagnoses were systematically excluded from many clinical studies during the product's premarketing testing. Evaluation of the electrocardiograms for 769 patients who received venlafaxine tablets in 4 to 6 week doubleblind placebo-controlled trials, however, showed that the incidence of trial-emergent conduction abnormalities did not differ from that with placebo. The mean heart rate in venlafaxine tablets-treated patients was increased relative to baseline by about 4 beats per minute. The electrocardiograms for 357 patients who received venlafaxine hydrochloride extended-release capsules and 285 patients who received placebo in 8 to 12 week doubleblind, placebo-controlled trials were analyzed. The mean change from baseline in corrected QT interval (QTc) for venlafaxine hydrochloride extended-release capsules-treated patients was increased relative to that for placebo-treated patients (increase of 4.7 msec for venlafaxine hydrochloride extended-release capsules and decrease of 1.9 msec for placebo). In these same trials, the mean change from baseline in heart rate for venlafaxine hydrochloride extended-release capsules-treated patients was significantly higher than that for placebo (a mean increase of 4 beats per minute for venlafaxine hydrochloride extended-release capsules and 1 beat per minute for placebo). In a flexible-dose study, with venlafaxine tablets doses in the range of 200 to 375 mg/day and mean dose greater than 300 mg/day, venlafaxine tablets-treated patients had a mean increase in heart rate of 8.5 beats per minute compared with 1.7 beats per minute in the placebo group. As increases in heart rate were observed, caution should be exercised in patients whose underlying medical conditions might be compromised by increases in heart rate (e.g., patients with hyperthyroidism, heart failure, or recent myocardial infarction), particularly when using doses of venlafaxine tablets above 200 mg/day. In patients with renal impairment (GFR=10 to 70 mL/min) or cirrhosis of the liver, the clearances of venlafaxine and its active metabolite were decreased, thus prolonging the elimination half-lives of these substances. A lower dose may be necessary (see DOSAGE AND ADMINISTRATION ). Venlafaxine tablets, like all antidepressants, should be used with caution in such patients. Information for Patients Prescribers or other health professionals should inform patients, their families, and their caregivers about the benefits and risks associated with treatment with venlafaxine tablets and should counsel them in its appropriate use. A patient Medication Guide about "Antidepressant Medicines, Depression and Other Serious Mental Illness, and Suicidal Thoughts or Actions" is available for venlafaxine tablets. The prescriber or health professional should instruct patients, their families, and their caregivers to read the Medication Guide and should assist them in understanding its contents. Patients should be given the opportunity to discuss the contents of the Medication Guide and to obtain answers to any questions they may have. The complete text of the Medication Guide is reprinted at the end of this document. Patients should be advised of the following issues and asked to alert their prescriber if these occur while taking venlafaxine tablets. Clinical Worsening and Suicide Risk Patients, their families, and their caregivers should be encouraged to be alert to the emergence of anxiety, agitation, panic attacks, insomnia, irritability, hostility, aggressiveness, impulsivity, akathisia (psychomotor restlessness), hypomania, mania, other unusual changes in behavior, worsening of depression, and suicidal ideation, especially early during antidepressant treatment and when the dose is adjusted up or down. Families and caregivers of patients should be advised to look for the emergence of such symptoms on a day-to-day basis, since changes may be abrupt. Such symptoms should be reported to the patient's prescriber or health professional, especially if they are severe, abrupt in onset, or were not part of the patient's presenting symptoms. Symptoms such as these may be associated with an increased risk for suicidal thinking and behavior and indicate a need for very close monitoring and possibly changes in the medication. Interference with Cognitive and Motor Performance Clinical studies were performed to examine the effects of venlafaxine on behavioral performance of healthy individuals. The results revealed no clinically significant impairment of psychomotor, cognitive, or complex behavior performance. However, since any psychoactive drug may impair judgment, thinking, or motor skills, patients should be cautioned about operating hazardous machinery, including automobiles, until they are reasonably certain that venlafaxine tablets therapy does not adversely affect their ability to engage in such activities. Angle-Closure Glaucoma Patients should be advised that taking venlafaxine tablets can cause mild pupillary dilation, which in susceptible individuals, can lead to an episode of angle-closure glaucoma. Pre-existing glaucoma is almost always open-angle glaucoma because angle-closure glaucoma, when diagnosed, can be treated definitively with iridectomy. Open-angle glaucoma is not a risk factor for angle closure glaucoma. Patients may wish to be examined to determine whether they are susceptible to angle closure, and have a prophylactic procedure (e.g., iridectomy), if they are susceptible. Pregnancy Patients should be advised to notify their physician if they become pregnant or intend to become pregnant during therapy. Nursing Patients should be advised to notify their physician if they are breastfeeding an infant. Concomitant Medication Patients should be advised to inform their physicians if they are taking, or plan to take, any prescription or over-the-counter drugs, including herbal preparations and nutritional supplements, since there is a potential for interactions. Patients should be cautioned about the risk of serotonin syndrome with the concomitant use of venlafaxine tablets and triptans, tramadol, tryptophan supplements or other serotonergic agents (see CONTRAINDICATIONS and WARNINGS, Serotonin Syndrome and PRECAUTIONS, Drug Interactions, CNS-Active Drugs, Serotonergic Drugs ). Patients should be cautioned about the concomitant use of venlafaxine tablets and NSAIDs, aspirin, warfarin, or other drugs that affect coagulation since combined use of psychotropic drugs that interfere with serotonin reuptake and these agents has been associated with an increased risk of bleeding (see PRECAUTIONS, Abnormal Bleeding ). Alcohol Although venlafaxine tablets have not been shown to increase the impairment of mental and motor skills caused by alcohol, patients should be advised to avoid alcohol while taking venlafaxine tablets. Allergic Reactions Patients should be advised to notify their physician if they develop a rash, hives, or a related allergic phenomenon. Laboratory Tests There are no specific laboratory tests recommended. Drug Interactions As with all drugs, the potential for interaction by a variety of mechanisms is a possibility. Alcohol A single dose of ethanol (0.5 g/kg) had no effect on the pharmacokinetics of venlafaxine or ODV when venlafaxine was administered at 150 mg/day in 15 healthy male subjects. Additionally, administration of venlafaxine in a stable regimen did not exaggerate the psychomotor and psychometric effects induced by ethanol in these same subjects when they were not receiving venlafaxine. Cimetidine Concomitant administration of cimetidine and venlafaxine in a steady-state study for both drugs resulted in inhibition of first-pass metabolism of venlafaxine in 18 healthy subjects. The oral clearance of venlafaxine was reduced by about 43%, and the exposure (AUC) and maximum concentration (Cmax) of the drug were increased by about 60%. However, coadministration of cimetidine had no apparent effect on the pharmacokinetics of ODV, which is present in much greater quantity in the circulation than is venlafaxine. The overall pharmacological activity of venlafaxine plus ODV is expected to increase only slightly, and no dosage adjustment should be necessary for most normal adults. However, for patients with preexisting hypertension, and for elderly patients or patients with hepatic dysfunction, the interaction associated with the concomitant use of venlafaxine and cimetidine is not known and potentially could be more pronounced. Therefore, caution is advised with such patients. Diazepam Under steady-state conditions for venlafaxine administered at 150 mg/day, a single 10 mg dose of diazepam did not appear to affect the pharmacokinetics of either venlafaxine or ODV in 18 healthy male subjects. Venlafaxine also did not have any effect on the pharmacokinetics of diazepam or its active metabolite, desmethyldiazepam, or affect the psychomotor and psychometric effects induced by diazepam. Haloperidol Venlafaxine administered under steady-state conditions at 150 mg/day in 24 healthy subjects decreased total oral-dose clearance (Cl/F) of a single 2 mg dose of haloperidol by 42%, which resulted in a 70% increase in haloperidol AUC. In addition, the haloperidol Cmax increased 88% when coadministered with venlafaxine, but the haloperidol elimination half-life (t1/2) was unchanged. The mechanism explaining this finding is unknown. Lithium The steady-state pharmacokinetics of venlafaxine administered at 150 mg/day were not affected when a single 600 mg oral dose of lithium was administered to 12 healthy male subjects. O-desmethylvenlafaxine (ODV) also was unaffected. Venlafaxine had no effect on the pharmacokinetics of lithium (see also CNS-Active Drugs , below ). Drugs Highly Bound to Plasma Protein Venlafaxine is not highly bound to plasma proteins; therefore, administration of venlafaxine tablets to a patient taking another drug that is highly protein bound should not cause increased free concentrations of the other drug. Drugs that Interfere with Hemostasis (e.g., NSAIDs, Aspirin, and Warfarin) Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when venlafaxine is initiated or discontinued. Drugs that Inhibit Cytochrome P450 Isoenzymes CYP2D6 Inhibitors: In vitro and in vivo studies indicate that venlafaxine is metabolized to its active metabolite, ODV, by CYP2D6, the isoenzyme that is responsible for the genetic polymorphism seen in the metabolism of many antidepressants. Therefore, the potential exists for a drug interaction between drugs that inhibit CYP2D6-mediated metabolism and venlafaxine. However, although imipramine partially inhibited the CYP2D6-mediated metabolism of venlafaxine, resulting in higher plasma concentrations of venlafaxine and lower plasma concentrations of ODV, the total concentration of active compounds (venlafaxine plus ODV) was not affected. Additionally, in a clinical study involving CYP2D6-poor and -extensive metabolizers, the total concentration of active compounds (venlafaxine plus ODV), was similar in the two metabolizer groups. Therefore, no dosage adjustment is required when venlafaxine is coadministered with a CYP2D6 inhibitor. Ketoconazole A pharmacokinetic study with ketoconazole 100 mg b.i.d. with a single dose of venlafaxine 50 mg in extensive metabolizers (EM; n = 14) and 25 mg in poor metabolizers (PM; n = 6) of CYP2D6 resulted in higher plasma concentrations of both venlafaxine and O-desmethylvenlafaxine (ODV) in most subjects following administration of ketoconazole. Venlafaxine Cmax increased by 26% in EM subjects and 48% in PM subjects. Cmax values for ODV increased by 14% and 29% in EM and PM subjects, respectively. Venlafaxine AUC increased by 21% in EM subjects and 70% in PM subjects (range in PMs - 2% to 206%), and AUC values for ODV increased by 23% and 33% in EM and PM subjects (range in PMs - 38% to 105%) subjects, respectively. Combined AUCs of venlafaxine and ODV increased on average by approximately 23% in EMS and 53% in PMs (range in PMs – 4% to 134%). Concomitant use of CYP3A4 inhibitors and venlafaxine may increase levels of venlafaxine and ODV. Therefore, caution is advised if a patient's therapy includes a CYP3A4 inhibitor and venlafaxine concomitantly. CYP3A4 Inhibitors In vitro studies indicate that venlafaxine is likely metabolized to a minor, less active metabolite, N-desmethylvenlafaxine, by CYP3A4. Because CYP3A4 is typically a minor pathway relative to CYP2D6 in the metabolism of venlafaxine, the potential for a clinically significant drug interaction between drugs that inhibit CYP3A4-mediated metabolism and venlafaxine is small. The concomitant use of venlafaxine with a drug treatment(s) that potently inhibits both CYP2D6 and CYP3A4, the primary metabolizing enzymes for venlafaxine, has not been studied. Therefore, caution is advised should a patient's therapy include venlafaxine and any agent(s) that produce potent simultaneous inhibition of these two enzyme systems. Drugs Metabolized by Cytochrome P450 Isoenzymes CYP2D6: In vitro studies indicate that venlafaxine is a relatively weak inhibitor of CYP2D6. These findings have been confirmed in a clinical drug interaction study comparing the effect of venlafaxine to that of fluoxetine on the CYP2D6-mediated metabolism of dextromethorphan to dextrorphan. Imipramine Venlafaxine did not affect the pharmacokinetics of imipramine and 2-OH-imipramine. However, desipramine AUC, Cmax, and Cmin increased by about 35% in the presence of venlafaxine. The 2-OH-desipramine AUCs increased by at least 2.5 fold (with venlafaxine 37.5 mg q12h) and by 4.5 fold (with venlafaxine 75 mg q12h). Imipramine did not affect the pharmacokinetics of venlafaxine and ODV. The clinical significance of elevated 2-OH-desipramine levels is unknown. Metoprolol Concomitant administration of venlafaxine (50 mg every 8 hours for 5 days) and metoprolol (100 mg every 24 hours for 5 days) to 18 healthy male subjects in a pharmacokinetic interaction study for both drugs resulted in an increase of plasma concentrations of metoprolol by approximately 30 to 40% without altering the plasma concentrations of its active metabolite, α-hydroxymetoprolol. Metoprolol did not alter the pharmacokinetic profile of venlafaxine or its active metabolite, O-desmethylvenlafaxine. Venlafaxine appeared to reduce the blood pressure lowering effect of metoprolol in this study. The clinical relevance of this finding for hypertensive patients is unknown. Caution should be exercised with coadministration of venlafaxine and metoprolol. Venlafaxine treatment has been associated with dose-related increases in blood pressure in some patients. It is recommended that patients receiving venlafaxine tablets have regular monitoring of blood pressure (see WARNINGS ). Risperidone Venlafaxine administered under steady-state conditions at 150 mg/day slightly inhibited the CYP2D6-mediated metabolism of risperidone (administered as a single 1 mg oral dose) to its active metabolite, 9-hydroxyrisperidone, resulting in an approximate 32% increase in risperidone AUC. However, venlafaxine coadministration did not significantly alter the pharmacokinetic profile of the total active moiety (risperidone plus 9-hydroxyrisperidone). CYP3A4 Venlafaxine did not inhibit CYP3A4 in vitro. This finding was confirmed in vivo by clinical drug interaction studies in which venlafaxine did not inhibit the metabolism of several CYP3A4 substrates, including alprazolam, diazepam, and terfenadine. Indinavir In a study of 9 healthy volunteers, venlafaxine administered under steady-state conditions at 150 mg/day resulted in a 28% decrease in the AUC of a single 800 mg oral dose of indinavir and a 36% decrease in indinavir Cmax. Indinavir did not affect the pharmacokinetics of venlafaxine and ODV. The clinical significance of this finding is unknown. CYP1A2 Venlafaxine did not inhibit CYP1A2 in vitro. This finding was confirmed in vivo by a clinical drug interaction study in which venlafaxine did not inhibit the metabolism of caffeine, a CYP1A2 substrate. CYP2C9 Venlafaxine did not inhibit CYP2C9 in vitro. In vivo, venlafaxine 75 mg by mouth every 12 hours did not alter the pharmacokinetics of a single 500 mg dose of tolbutamide or the CYP2C9 mediated formation of 4-hydroxy-tolbutamide. CYP2C19 Venlafaxine did not inhibit the metabolism of diazepam which is partially metabolized by CYP2C19 (see Diazepam above). Monoamine Oxidase Inhibitors See CONTRAINDICATIONS . CNS-Active Drugs The risk of using venlafaxine in combination with other CNS-active drugs has not been systematically evaluated (except in the case of those CNS-active drugs noted above). Consequently, caution is advised if the concomitant administration of venlafaxine and such drugs is required. (see CONTRAINDICATIONS and WARNINGS ) Serotonergic Drugs Based on the mechanism of action of venlafaxine and the potential for serotonin syndrome, caution is advised when venlafaxine is coadministered with other drugs that may affect the serotonergic neurotransmitter systems, such as triptans, SSRIs, other SNRIs, linezolid (an antibiotic which is a reversible non-selective MAOI), lithium, tramadol, amphetamines or St. John's Wort and methylene blue (see CONTRAINDICATIONS and WARNINGS, Serotonin Syndrome). If concomitant treatment of venlafaxine tablets with these drugs is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see CONTRAINDICATIONS, WARNINGS, Serotonin Syndrome). The concomitant use of venlafaxine tablets with tryptophan supplements is not recommended (see CONTRAINDICATIONS, WARNINGS, Serotonin Syndrome). Triptans There have been rare postmarketing reports of serotonin syndrome with use of an SSRI and a triptan. If concomitant treatment of venlafaxine tablets with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS, Serotonin Syndrome). Drug-Laboratory Test Interactions False-positive urine immunoassay screening tests for phencyclidine (PCP) and amphetamine have been reported in patients taking venlafaxine. This is due to lack of specificity of the screening tests. False positive test results may be expected for several days following discontinuation of venlafaxine therapy. Confirmatory tests, such as gas chromatography/mass spectrometry, will distinguish venlafaxine from PCP and amphetamine. Electroconvulsive Therapy There are no clinical data establishing the benefit of electroconvulsive therapy combined with venlafaxine tablets treatment. Postmarketing Spontaneous Drug Interaction Reports See ADVERSE REACTIONS, Postmarketing Reports . Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenesis Venlafaxine was given by oral gavage to mice for 18 months at doses up to 120 mg/kg per day, which was 16 times, on a mg/kg basis, and 1.7 times on a mg/m2 basis, the maximum recommended human dose. Venlafaxine was also given to rats by oral gavage for 24 months at doses up to 120 mg/kg per day. In rats receiving the 120 mg/kg dose, plasma levels of venlafaxine were 1 times (male rats) and 6 times (female rats) the plasma levels of patients receiving the maximum recommended human dose. Plasma levels of the O-desmethyl metabolite were lower in rats than in patients receiving the maximum recommended dose. Tumors were not increased by venlafaxine treatment in mice or rats. Mutagenicity Venlafaxine and the major human metabolite, O-desmethylvenlafaxine (ODV), were not mutagenic in the Ames reverse mutation assay in Salmonella bacteria or the CHO/HGPRT mammalian cell forward gene mutation assay. Venlafaxine was also not mutagenic in the in vitro BALB/c-3T3 mouse cell transformation assay, the sister chromatid exchange assay in cultured CHO cells, or the in vivo chromosomal aberration assay in rat bone marrow. ODV was not mutagenic in the in vitro CHO cell chromosomal aberration assay. There was a clastogenic response in the in vivo chromosomal aberration assay in rat bone marrow in male rats receiving 200 times, on a mg/kg basis, or 50 times, on a mg/m2 basis, the maximum human daily dose. The no effect dose was 67 times (mg/kg) or 17 times (mg/m2) the human dose. Impairment of Fertility Reproduction and fertility studies of venlafaxine in rats showed no adverse effects on male or female fertility at oral doses of up to 2 times the maximum recommended human dose of 225 mg/day on a mg/m2 basis. However, reduced fertility was observed in a study in which male and female rats were treated with O-desmethylvenlafaxine (ODV), the major human metabolite of venlafaxine, prior to and during mating and gestation. This occurred at an ODV exposure (AUC) approximately 2 to 3 times that associated with a human venlafaxine dose of 225 mg/day. Pregnancy Teratogenic Effects—Pregnancy Category C Venlafaxine did not cause malformations in offspring of rats or rabbits given doses up to 11 times (rat) or 12 times (rabbit) the maximum recommended huma
Adverse reactions
ADVERSE REACTIONS Associated with Discontinuation of Treatment Nineteen percent (537/2897) of venlafaxine patients in Phase 2 and Phase 3 depression studies discontinued treatment due to an adverse event. The more common events (≥ 1%) associated with discontinuation and considered to be drug-related (i.e., those events associated with dropout at a rate approximately twice or greater for venlafaxine compared to placebo) included: CNS Venlafaxine Placebo * Percentages based on the number of males. — Less than 1% Somnolence 3% 1% Insomnia 3% 1% Dizziness 3% − Nervousness 2% − Dry mouth 2% − Anxiety 2% 1% Gastrointestinal Nausea 6% 1% Urogenital Abnormal 3% − ejaculation* Other Headache 3% 1% Asthenia 2% − Sweating 2% − Incidence in Controlled Trials Commonly Observed Adverse Events in Controlled Clinical Trials The most commonly observed adverse events associated with the use of venlafaxine tablets (incidence of 5% or greater) and not seen at an equivalent incidence among placebo-treated patients (i.e., incidence for venlafaxine tablets at least twice that for placebo), derived from the 1% incidence table below, were asthenia, sweating, nausea, constipation, anorexia, vomiting, somnolence, dry mouth, dizziness, nervousness, anxiety, tremor, and blurred vision as well as abnormal ejaculation/orgasm and impotence in men. Adverse Events Occurring at an Incidence of 1% or More Among Venlafaxine Tablets -Treated Patients The table that follows enumerates adverse events that occurred at an incidence of 1% or more, and were more frequent than in the placebo group, among venlafaxine tablets-treated patients who participated in short-term (4 to 8 week) placebo-controlled trials in which patients were administered doses in a range of 75 to 375 mg/day. This table shows the percentage of patients in each group who had at least one episode of an event at some time during their treatment. Reported adverse events were classified using a standard COSTART-based Dictionary terminology. The prescriber should be aware that these figures cannot be used to predict the incidence of side effects in the course of usual medical practice where patient characteristics and other factors differ from those which prevailed in the clinical trials. Similarly, the cited frequencies cannot be compared with figures obtained from other clinical investigations involving different treatments, uses and investigators. The cited figures, however, do provide the prescribing physician with some basis for estimating the relative contribution of drug and nondrug factors to the side effect incidence rate in the population studied. TABLE 2Treatment-Emergent Adverse Experience Incidence in 4 to 8 Week Placebo-Controlled Clinical Trials1 1 Events reported by at least 1% of patients treated with venlafaxine tablets are included, and are rounded to the nearest %. Events for which the venlafaxine tablets incidence was equal to or less than placebo are not listed in the table, but included the following: abdominal pain, pain, back pain, flu syndrome, fever, palpitation, increased appetite, myalgia, arthralgia, amnesia, hypesthesia, rhinitis, pharyngitis, sinusitis, cough increased, and dysmenorrhea3. — Incidence less than 1%. 2Incidence based on number of male patients. 3Incidence based on number of female patients. Body System Preferred Term Venlafaxine Tablets Placebo ( n = 1033 ) ( n = 609 ) Body as a Whole Headache 25% 24% Asthenia 12% 6% Infection 6% 5% Chills 3% — Chest pain 2% 1% Trauma 2% 1% Cardiovascular Vasodilatation 4% 3% Increased blood pressure/hypertension 2% — Tachycardia 2% — Postural hypotension 1% — Dermatological Sweating 12% 3% Rash 3% 2% Pruritus 1% — Gastrointestinal Nausea 37% 11% Constipation 15% 7% Anorexia 11% 2% Diarrhea 8% 7% Vomiting 6% 2% Dyspepsia 5% 4% Flatulence 3% 2% Metabolic Weight loss 1% __ Nervous System Somnolence 23% 9% Dry mouth 22% 11% Dizziness 19% 7% Insomnia 18% 10% Nervousness 13% 6% Anxiety 6% 3% Tremor 5% 1% Abnormal dreams 4% 3% Hypertonia 3% 2% Paresthesia 3% 2% Libido decreased 2% — Agitation 2% — Confusion 2% 1% Thinking abnormal 2% 1% Depersonalization 1% — Depression 1% — Urinary retention 1% — Twitching 1% — Respiration Yawn 3% — Special Senses Blurred vision 6% 2% Taste perversion 2% — Tinnitus 2% — Mydriasis 2% — Urogenital System Abnormal ejaculation/orgasm 12%2 —2 Impotence 6 %2 —2 Urinary frequency 3% 2% Urination impaired 2% — Orgasm disturbance 2%3 —3 Dose Dependency of Adverse Events A comparison of adverse event rates in a fixed-dose study comparing venlafaxine tablets 75, 225, and 375 mg/day with placebo revealed a dose dependency for some of the more common adverse events associated with venlafaxine tablets use, as shown in the table that follows. The rule for including events was to enumerate those that occurred at an incidence of 5% or more for at least one of the venlafaxine groups and for which the incidence was at least twice the placebo incidence for at least one venlafaxine tablets group. Tests for potential dose relationships for these events (Cochran-Armitage Test, with a criterion of exact 2-sided p-value ≤ 0.05) suggested a dose-dependency for several adverse events in this list, including chills, hypertension, anorexia, nausea, agitation, dizziness, somnolence, tremor, yawning, sweating, and abnormal ejaculation. TABLE 3Treatment-Emergent Adverse Experience Incidence in a Dose Comparison Trial Venlafaxine Tablets ( mg / day ) Body System / Preferred Term Placebo 75 225 375 ( n = 92 ) ( n = 89 ) ( n = 89 ) ( n = 88 ) Body as a Whole Abdominal pain 3.3% 3.4% 2.2% 8% Asthenia 3.3% 16.9% 14.6% 14.8% Chills 1.1% 2.2% 5.6% 6.8% Infection 2.2% 2.2% 5.6% 2.3% Cardiovascular System Hypertension 1.1% 1.1% 2.2% 4.5% Vasodilatation 0% 4.5% 5.6% 2.3% Digestive System Anorexia 2.2% 14.6% 13.5% 17% Dyspepsia 2.2% 6.7% 6.7% 4.5% Nausea 14.1% 32.6% 38.2% 58% Vomiting 1.1% 7.9% 3.4% 6.8% Nervous System Agitation 0% 1.1% 2.2% 4.5% Anxiety 4.3% 11.2% 4.5% 2.3% Dizziness 4.3% 19.1% 22.5% 23.9% Insomnia 9.8% 22.5% 20.2% 13.6% Libido decreased 1.1% 2.2% 1.1% 5.7% Nervousness 4.3% 21.3% 13.5% 12.5% Somnolence 4.3% 16.9% 18% 26.1% Tremor 0% 1.1% 2.2% 10.2% Respiratory System Yawn 0% 4.5% 5.6% 8% Skin and Appendages Sweating 5.4% 6.7% 12.4% 19.3% Special Senses Abnormality of accommodation 0% 9.1% 7.9% 5.6% Urogenital System Abnormal ejaculation/orgasm 0% 4.5% 2.2% 12.5% Impotence 0% 5.8% 2.1% 3.6% (Number of men) (n=63) (n=52) (n=48) (n=56) Adaptation to Certain Adverse Events Over a 6 week period, there was evidence of adaptation to some adverse events with continued therapy (e.g., dizziness and nausea), but less to other effects (e.g., abnormal ejaculation and dry mouth). Vital Sign Changes Venlafaxine tablets treatment (averaged over all dose groups) in clinical trials was associated with a mean increase in pulse rate of approximately 3 beats per minute, compared to no change for placebo. In a flexible-dose study, with doses in the range of 200 to 375 mg/day and mean dose greater than 300 mg/day, the mean pulse was increased by about 2 beats per minute compared with a decrease of about 1 beat per minute for placebo. In controlled clinical trials, venlafaxine tablets were associated with mean increases in diastolic blood pressure ranging from 0.7 to 2.5 mm Hg averaged over all dose groups, compared to mean decreases ranging from 0.9 to 3.8 mm Hg for placebo. However, there is a dose dependency for blood pressure increase (see WARNINGS). Laboratory Changes Of the serum chemistry and hematology parameters monitored during clinical trials with venlafaxine tablets, a statistically significant difference with placebo was seen only for serum cholesterol. In premarketing trials, treatment with venlafaxine tablets was associated with a mean final on-therapy increase in total cholesterol of 3 mg/dL. Patients treated with venlafaxine tablets for at least 3 months in placebocontrolled 12 month extension trials had a mean final on-therapy increase in total cholesterol of 9.1 mg/dL compared with a decrease of 7.1 mg/dL among placebo-treated patients. This increase was duration dependent over the study period and tended to be greater with higher doses. Clinically relevant increases in serum cholesterol, defined as 1) a final on-therapy increase in serum cholesterol ≥ 50 mg/dL from baseline and to a value ≥ 261 mg/dL or 2) an average on-therapy increase in serum cholesterol ≥ 50 mg/dL from baseline and to a value ≥ 261 mg/dL, were recorded in 5.3% of venlafaxine-treated patients and 0% of placebo-treated patients (see PRECAUTIONS-General-Serum Cholesterol Elevation). ECG Changes In an analysis of ECGs obtained in 769 patients treated with venlafaxine tablets and 450 patients treated with placebo in controlled clinical trials, the only statistically significant difference observed was for heart rate, i.e., a mean increase from baseline of 4 beats per minute for venlafaxine tablets. In a flexible-dose study, with doses in the range of 200 to 375 mg/day and mean dose greater than 300 mg/day, the mean change in heart rate was 8.5 beats per minute compared with 1.7 beats per minute for placebo (see PRECAUTIONS, General, Use in Patients with Concomitant Illness). Other Events Observed During the Premarketing Evaluation of Venlafaxine During its premarketing assessment, multiple doses of venlafaxine tablets were administered to 2897 patients in Phase 2 and Phase 3 studies. In addition, in premarketing assessment of venlafaxine hydrochloride extended-release capsules, multiple doses were administered to 705 patients in Phase 3 major depressive disorder studies and venlafaxine tablets were administered to 96 patients. During its premarketing assessment, multiple doses of venlafaxine hydrochloride extended-release capsules were also administered to 1381 patients in Phase 3 GAD studies and 277 patients in Phase 3 Social Anxiety Disorder studies. The conditions and duration of exposure to venlafaxine in both development programs varied greatly, and included (in overlapping categories) open and doubleblind studies, uncontrolled and controlled studies, inpatient (venlafaxine tablets only) and outpatient studies, fixed-dose and titration studies. Untoward events associated with this exposure were recorded by clinical investigators using terminology of their own choosing. Consequently, it is not possible to provide a meaningful estimate of the proportion of individuals experiencing adverse events without first grouping similar types of untoward events into a smaller number of standardized event categories. In the tabulations that follow, reported adverse events were classified using a standard COSTART-based Dictionary terminology. The frequencies presented, therefore, represent the proportion of the 5356 patients exposed to multiple doses of either formulation of venlafaxine who experienced an event of the type cited on at least one occasion while receiving venlafaxine. All reported events are included except those already listed in Table 2 and those events for which a drug cause was remote. If the COSTART term for an event was so general as to be uninformative, it was replaced with a more informative term. It is important to emphasize that, although the events reported occurred during treatment with venlafaxine, they were not necessarily caused by it. Events are further categorized by body system and listed in order of decreasing frequency using the following definitions: frequent adverse events are defined as those occurring on one or more occasions in at least 1/100 patients; infrequent adverse events are those occurring in 1/100 to 1/1000 patients; rare events are those occurring in fewer than 1/1000 patients. Body as a whole—Frequent: accidental injury, chest pain substernal, neck pain; Infrequent: face edema, intentional injury, malaise, moniliasis, neck rigidity, pelvic pain, photosensitivity reaction, suicide attempt, withdrawal syndrome; Rare: appendicitis, bacteremia, carcinoma, cellulitis. Cardiovascular system—Frequent: migraine; Infrequent: angina pectoris, arrhythmia, extrasystoles, hypotension, peripheral vascular disorder (mainly cold feet and/or cold hands), syncope, thrombophlebitis; Rare: aortic aneurysm, arteritis, first-degree atrioventricular block, bigeminy, bradycardia, bundle branch block, capillary fragility, cardiovascular disorder (mitral valve and circulatory disturbance), cerebral ischemia, coronary artery disease, congestive heart failure, heart arrest, mucocutaneous hemorrhage, myocardial infarct, pallor. Digestive system—Frequent: eructation; Infrequent: bruxism, colitis, dysphagia, tongue edema, esophagitis, gastritis, gastroenteritis, gastrointestinal ulcer, gingivitis, glossitis, rectal hemorrhage, hemorrhoids, melena, oral moniliasis, stomatitis, mouth ulceration; Rare: cheilitis, cholecystitis, cholelithiasis, duodenitis, esophageal spasm, hematemesis, gastrointestinal hemorrhage, gum hemorrhage, hepatitis, ileitis, jaundice, intestinal obstruction, parotitis, periodontitis, proctitis, increased salivation, soft stools, tongue discoloration. Endocrine system—Rare: goiter, hyperthyroidism, hypothyroidism, thyroid nodule, thyroiditis. Hemic and lymphatic system—Frequent: ecchymosis; Infrequent: anemia, leukocytosis, leukopenia, lymphadenopathy, thrombocythemia, thrombocytopenia; Rare: basophilia, bleeding time increased, cyanosis, eosinophilia, lymphocytosis, multiple myeloma, purpura. Metabolic and nutritional—Frequent: edema, weight gain; Infrequent: alkaline phosphatase increased, dehydration, hypercholesteremia, hyperglycemia, hyperlipemia, hypokalemia, SGOT (AST) increased, SGPT (ALT) increased, thirst; Rare: alcohol intolerance, bilirubinemia, BUN increased, creatinine increased, diabetes mellitus, glycosuria, gout, healing abnormal, hemochromatosis, hypercalcinuria, hyperkalemia, hyperphosphatemia, hyperuricemia, hypocholesteremia, hypoglycemia, hyponatremia, hypophosphatemia, hypoproteinemia, uremia. Musculoskeletal system—Infrequent: arthritis, arthrosis, bone pain, bone spurs, bursitis, leg cramps, myasthenia, tenosynovitis; Rare: pathological fracture, myopathy, osteoporosis, osteosclerosis, plantar fasciitis, rheumatoid arthritis, tendon rupture. Nervous system—Frequent: trismus, vertigo; Infrequent: akathisia, apathy, ataxia, circumoral paresthesia, CNS stimulation, emotional lability, euphoria, hallucinations, hostility, hyperesthesia, hyperkinesia, hypotonia, incoordination, libido increased, manic reaction, myoclonus, neuralgia, neuropathy, psychosis, seizure, abnormal speech, stupor; Rare: akinesia, alcohol abuse, aphasia, bradykinesia, buccoglossal syndrome, cerebrovascular accident, loss of consciousness, delusions, dementia, dystonia, facial paralysis, feeling drunk, abnormal gait, Guillain-Barre Syndrome, hyperchlorhydria, hypokinesia, impulse control difficulties, neuritis, nystagmus, paranoid reaction, paresis, psychotic depression, reflexes decreased, reflexes increased, suicidal ideation, torticollis. Respiratory system—Frequent: bronchitis, dyspnea; Infrequent: asthma, chest congestion, epistaxis, hyperventilation, laryngismus, laryngitis, pneumonia, voice alteration; Rare: atelectasis, hemoptysis, hypoventilation, hypoxia, larynx edema, pleurisy, pulmonary embolus, sleep apnea. Skin and appendages—Infrequent: acne, alopecia, brittle nails, contact dermatitis, dry skin, eczema, skin hypertrophy, maculopapular rash, psoriasis, urticaria; Rare: erythema nodosum, exfoliative dermatitis, lichenoid dermatitis, hair discoloration, skin discoloration, furunculosis, hirsutism, leukoderma, petechial rash, pustular rash, vesiculobullous rash, seborrhea, skin atrophy, skin striae. Special senses—Frequent: abnormality of accommodation, abnormal vision; Infrequent: cataract, conjunctivitis, corneal lesion, diplopia, dry eyes, eye pain, hyperacusis, otitis media, parosmia, photophobia, taste loss, visual field defect; Rare: blepharitis, chromatopsia, conjunctival edema, deafness, exophthalmos, angle-closure glaucoma, retinal hemorrhage, subconjunctival hemorrhage, keratitis, labyrinthitis, miosis, papilledema, decreased pupillary reflex, otitis externa, scleritis, uveitis. Urogenital system—Frequent: metrorrhagia*, prostatic disorder (prostatitis and enlarged prostate)*, vaginitis*; Infrequent: albuminuria, amenorrhea*, cystitis, dysuria, hematuria, leukorrhea*, menorrhagia*, nocturia, bladder pain, breast pain, polyuria, pyuria, urinary incontinence, urinary urgency, vaginal hemorrhage*; Rare: abortion*, anuria, balanitis*, breast discharge, breast engorgement, breast enlargement, endometriosis*, fibrocystic breast, calcium crystalluria, cervicitis*, ovarian cyst*, prolonged erection*, gynecomastia (male)*, hypomenorrhea*, kidney calculus, kidney pain, kidney function abnormal, female lactation*, mastitis, menopause*, oliguria, orchitis*, pyelonephritis, salpingitis*, urolithiasis, uterine hemorrhage*, uterine spasm*, vaginal dryness*. *Based on the number of men and women as appropriate. Postmarketing Reports Voluntary reports of other adverse events temporally associated with the use of venlafaxine that have been received since market introduction and that may have no causal relationship with the use of venlafaxine include the following: agranulocytosis, anaphylaxis, angioedema, aplastic anemia, catatonia, congenital anomalies, impaired coordination and balance, CPK increased, deep vein thrombophlebitis, delirium, EKG abnormalities such as QT prolongation; cardiac arrhythmias including atrial fibrillation, supraventricular tachycardia, ventricular extrasystole, and rare reports of ventricular fibrillation and ventricular tachycardia, including torsade de pointes; toxic epidermal necrolysis/Stevens-Johnson Syndrome, erythema multiforme, extrapyramidal symptoms (including dyskinesia and tardive dyskinesia), angle-closure glaucoma, hemorrhage (including eye and gastrointestinal bleeding), hepatic events (including GGT elevation; abnormalities of unspecified liver function tests; liver damage, necrosis, or failure; and fatty liver), interstitial lung disease, involuntary movements, LDH increased, neutropenia, night sweats, pancreatitis, pancytopenia, panic, prolactin increased, renal failure, rhabdomyolysis, shock-like electrical sensations or tinnitus (in some cases, subsequent to the discontinuation of venlafaxine or tapering of dose), and syndrome of inappropriate antidiuretic hormone secretion (usually in the elderly). There have been reports of elevated clozapine levels that were temporally associated with adverse events, including seizures, following the addition of venlafaxine. There have been reports of increases in prothrombin time, partial thromboplastin time, or INR when venlafaxine was given to patients receiving warfarin therapy.

Usage information

Dosing and administration
DOSAGE AND ADMINISTRATION Initial Treatment The recommended starting dose for venlafaxine tablets is 75 mg/day, administered in two or three divided doses, taken with food. Depending on tolerability and the need for further clinical effect, the dose may be increased to 150 mg/day. If needed, the dose should be further increased up to 225 mg/day. When increasing the dose, increments of up to 75 mg/day should be made at intervals of no less than 4 days. In outpatient settings there was no evidence of usefulness of doses greater than 225 mg/day for moderately depressed patients, but more severely depressed inpatients responded to a mean dose of 350 mg/day. Certain patients, including more severely depressed patients, may therefore respond more to higher doses, up to a maximum of 375 mg/day, generally in three divided doses (see PRECAUTIONS, General, Use in Patients with Concomitant Illness ). Special Populations Treatment of Pregnant Women During the Third Trimester Neonates exposed to venlafaxine tablets, other SNRIs, or SSRIs, late in the third trimester have developed complications requiring prolonged hospitalization, respiratory support, and tube feeding (see PRECAUTIONS ). When treating pregnant women with venlafaxine tablets during the third trimester, the physician should carefully consider the potential risks and benefits of treatment. Dosage for Patients with Hepatic Impairment Given the decrease in clearance and increase in elimination half-life for both venlafaxine and ODV that is observed in patients with hepatic cirrhosis and mild and moderate hepatic impairment compared to normal subjects (see CLINICAL PHARMACOLOGY ), it is recommended that the total daily dose be reduced by 50% in patients with mild to moderate hepatic impairment. Since there was much individual variability in clearance between subjects with cirrhosis, it may be necessary to reduce the dose even more than 50%, and individualization of dosing may be desirable in some patients. Dosage for Patients with Renal Impairment Given the decrease in clearance for venlafaxine and the increase in elimination half-life for both venlafaxine and ODV that is observed in patients with renal impairment (GFR = 10 to 70 mL/min) compared to normals (see CLINICAL PHARMACOLOGY ), it is recommended that the total daily dose be reduced by 25% in patients with mild to moderate renal impairment. It is recommended that the total daily dose be reduced by 50% in patients undergoing hemodialysis. Since there was much individual variability in clearance between patients with renal impairment, individualization of dosing may be desirable in some patients. Dosage for Elderly Patients No dose adjustment is recommended for elderly patients on the basis of age. As with any antidepressant, however, caution should be exercised in treating the elderly. When individualizing the dosage, extra care should be taken when increasing the dose. Maintenance Treatment It is generally agreed that acute episodes of major depressive disorder require several months or longer of sustained pharmacological therapy beyond response to the acute episode. In one study, in which patients responding during 8 weeks of acute treatment with venlafaxine hydrochloride extended-release capsules were assigned randomly to placebo or to the same dose of venlafaxine hydrochloride extended-release capsules (75, 150, or 225 mg/day, qAM) during 26 weeks of maintenance treatment as they had received during the acute stabilization phase, longer-term efficacy was demonstrated. A second longer-term study has demonstrated the efficacy of venlafaxine tablets in maintaining an antidepressant response in patients with recurrent depression who had responded and continued to be improved during an initial 26 weeks of treatment and were then randomly assigned to placebo or venlafaxine tablets for periods of up to 52 weeks on the same dose (100 to 200 mg/day, on a b.i.d. schedule) (see CLINICAL TRIALS ). Based on these limited data, it is not known whether or not the dose of venlafaxine tablets/venlafaxine hydrochloride extended-release capsules needed for maintenance treatment is identical to the dose needed to achieve an initial response. Patients should be periodically reassessed to determine the need for maintenance treatment and the appropriate dose for such treatment. Discontinuing Venlafaxine Tablets Symptoms associated with discontinuation of venlafaxine tablets, other SNRIs, and SSRIs, have been reported (see PRECAUTIONS ). Patients should be monitored for these symptoms when discontinuing treatment. A gradual reduction in the dose rather than abrupt cessation is recommended whenever possible. If intolerable symptoms occur following a decrease in the dose or upon discontinuation of treatment, then resuming the previously prescribed dose may be considered. Subsequently, the physician may continue decreasing the dose but at a more gradual rate. Switching a Patient To or From a Monoamine Oxidase Inhibitor (MAOI) Intended to Treat Psychiatric Disorders At least 14 days should elapse between discontinuation of an MAOI intended to treat psychiatric disorders and initiation of therapy with venlafaxine tablets. Conversely, at least 7 days should be allowed after stopping venlafaxine tablets before starting an MAOI intended to treat psychiatric disorders (see CONTRAINDICATIONS ). Use of Venlafaxine Tablets With Other MAOls, Such as Linezolid or Methylene Blue Do not start venlafaxine tablets in a patient who is being treated with linezolid or intravenous methylene blue because there is increased risk of serotonin syndrome. In a patient who requires more urgent treatment of a psychiatric condition, other interventions, including hospitalization, should be considered (see CONTRAINDICATIONS). In some cases, a patient already receiving therapy with venlafaxine tablets may require urgent treatment with linezolid or intravenous methylene blue. If acceptable alternatives to linezolid or intravenous methylene blue treatment are not available and the potential benefits of linezolid or intravenous methylene blue treatment are judged to outweigh the risks of serotonin syndrome in a particular patient, venlafaxine tablets should be stopped promptly, and linezolid or intravenous methylene blue can be administered. The patient should be monitored for symptoms of serotonin syndrome for 7 days or until 24 hours after the last dose of linezolid or intravenous methylene blue, whichever comes first. Therapy with venlafaxine tablets may be resumed 24 hours after the last dose of linezolid or intravenous methylene blue (see WARNINGS). The risk of administering methylene blue by non-intravenous routes (such as oral tablets or by local injection) or in intravenous doses much lower than 1 mg/kg with venlafaxine tablets is unclear. The clinician should, nevertheless, be aware of the possibility of emergent symptoms of serotonin syndrome with such use (see WARNINGS).
Pregnancy and lactation
Nursing Mothers Venlafaxine and ODV have been reported to be excreted in humanmilk. Because of the potential for serious adverse reactions in nursing infants from venlafaxine tablets, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

Interactions

Drug Interactions As with all drugs, the potential for interaction by a variety of mechanisms is a possibility. Alcohol A single dose of ethanol (0.5 g/kg) had no effect on the pharmacokinetics of venlafaxine or ODV when venlafaxine was administered at 150 mg/day in 15 healthy male subjects. Additionally, administration of venlafaxine in a stable regimen did not exaggerate the psychomotor and psychometric effects induced by ethanol in these same subjects when they were not receiving venlafaxine. Cimetidine Concomitant administration of cimetidine and venlafaxine in a steady-state study for both drugs resulted in inhibition of first-pass metabolism of venlafaxine in 18 healthy subjects. The oral clearance of venlafaxine was reduced by about 43%, and the exposure (AUC) and maximum concentration (Cmax) of the drug were increased by about 60%. However, coadministration of cimetidine had no apparent effect on the pharmacokinetics of ODV, which is present in much greater quantity in the circulation than is venlafaxine. The overall pharmacological activity of venlafaxine plus ODV is expected to increase only slightly, and no dosage adjustment should be necessary for most normal adults. However, for patients with preexisting hypertension, and for elderly patients or patients with hepatic dysfunction, the interaction associated with the concomitant use of venlafaxine and cimetidine is not known and potentially could be more pronounced. Therefore, caution is advised with such patients. Diazepam Under steady-state conditions for venlafaxine administered at 150 mg/day, a single 10 mg dose of diazepam did not appear to affect the pharmacokinetics of either venlafaxine or ODV in 18 healthy male subjects. Venlafaxine also did not have any effect on the pharmacokinetics of diazepam or its active metabolite, desmethyldiazepam, or affect the psychomotor and psychometric effects induced by diazepam. Haloperidol Venlafaxine administered under steady-state conditions at 150 mg/day in 24 healthy subjects decreased total oral-dose clearance (Cl/F) of a single 2 mg dose of haloperidol by 42%, which resulted in a 70% increase in haloperidol AUC. In addition, the haloperidol Cmax increased 88% when coadministered with venlafaxine, but the haloperidol elimination half-life (t1/2) was unchanged. The mechanism explaining this finding is unknown. Lithium The steady-state pharmacokinetics of venlafaxine administered at 150 mg/day were not affected when a single 600 mg oral dose of lithium was administered to 12 healthy male subjects. O-desmethylvenlafaxine (ODV) also was unaffected. Venlafaxine had no effect on the pharmacokinetics of lithium (see also CNS-Active Drugs , below ). Drugs Highly Bound to Plasma Protein Venlafaxine is not highly bound to plasma proteins; therefore, administration of venlafaxine tablets to a patient taking another drug that is highly protein bound should not cause increased free concentrations of the other drug. Drugs that Interfere with Hemostasis (e.g., NSAIDs, Aspirin, and Warfarin) Serotonin release by platelets plays an important role in hemostasis. Epidemiological studies of the case-control and cohort design that have demonstrated an association between use of psychotropic drugs that interfere with serotonin reuptake and the occurrence of upper gastrointestinal bleeding have also shown that concurrent use of an NSAID or aspirin may potentiate this risk of bleeding. Altered anticoagulant effects, including increased bleeding, have been reported when SSRIs and SNRIs are coadministered with warfarin. Patients receiving warfarin therapy should be carefully monitored when venlafaxine is initiated or discontinued. Drugs that Inhibit Cytochrome P450 Isoenzymes CYP2D6 Inhibitors: In vitro and in vivo studies indicate that venlafaxine is metabolized to its active metabolite, ODV, by CYP2D6, the isoenzyme that is responsible for the genetic polymorphism seen in the metabolism of many antidepressants. Therefore, the potential exists for a drug interaction between drugs that inhibit CYP2D6-mediated metabolism and venlafaxine. However, although imipramine partially inhibited the CYP2D6-mediated metabolism of venlafaxine, resulting in higher plasma concentrations of venlafaxine and lower plasma concentrations of ODV, the total concentration of active compounds (venlafaxine plus ODV) was not affected. Additionally, in a clinical study involving CYP2D6-poor and -extensive metabolizers, the total concentration of active compounds (venlafaxine plus ODV), was similar in the two metabolizer groups. Therefore, no dosage adjustment is required when venlafaxine is coadministered with a CYP2D6 inhibitor. Ketoconazole A pharmacokinetic study with ketoconazole 100 mg b.i.d. with a single dose of venlafaxine 50 mg in extensive metabolizers (EM; n = 14) and 25 mg in poor metabolizers (PM; n = 6) of CYP2D6 resulted in higher plasma concentrations of both venlafaxine and O-desmethylvenlafaxine (ODV) in most subjects following administration of ketoconazole. Venlafaxine Cmax increased by 26% in EM subjects and 48% in PM subjects. Cmax values for ODV increased by 14% and 29% in EM and PM subjects, respectively. Venlafaxine AUC increased by 21% in EM subjects and 70% in PM subjects (range in PMs - 2% to 206%), and AUC values for ODV increased by 23% and 33% in EM and PM subjects (range in PMs - 38% to 105%) subjects, respectively. Combined AUCs of venlafaxine and ODV increased on average by approximately 23% in EMS and 53% in PMs (range in PMs – 4% to 134%). Concomitant use of CYP3A4 inhibitors and venlafaxine may increase levels of venlafaxine and ODV. Therefore, caution is advised if a patient's therapy includes a CYP3A4 inhibitor and venlafaxine concomitantly. CYP3A4 Inhibitors In vitro studies indicate that venlafaxine is likely metabolized to a minor, less active metabolite, N-desmethylvenlafaxine, by CYP3A4. Because CYP3A4 is typically a minor pathway relative to CYP2D6 in the metabolism of venlafaxine, the potential for a clinically significant drug interaction between drugs that inhibit CYP3A4-mediated metabolism and venlafaxine is small. The concomitant use of venlafaxine with a drug treatment(s) that potently inhibits both CYP2D6 and CYP3A4, the primary metabolizing enzymes for venlafaxine, has not been studied. Therefore, caution is advised should a patient's therapy include venlafaxine and any agent(s) that produce potent simultaneous inhibition of these two enzyme systems. Drugs Metabolized by Cytochrome P450 Isoenzymes CYP2D6: In vitro studies indicate that venlafaxine is a relatively weak inhibitor of CYP2D6. These findings have been confirmed in a clinical drug interaction study comparing the effect of venlafaxine to that of fluoxetine on the CYP2D6-mediated metabolism of dextromethorphan to dextrorphan. Imipramine Venlafaxine did not affect the pharmacokinetics of imipramine and 2-OH-imipramine. However, desipramine AUC, Cmax, and Cmin increased by about 35% in the presence of venlafaxine. The 2-OH-desipramine AUCs increased by at least 2.5 fold (with venlafaxine 37.5 mg q12h) and by 4.5 fold (with venlafaxine 75 mg q12h). Imipramine did not affect the pharmacokinetics of venlafaxine and ODV. The clinical significance of elevated 2-OH-desipramine levels is unknown. Metoprolol Concomitant administration of venlafaxine (50 mg every 8 hours for 5 days) and metoprolol (100 mg every 24 hours for 5 days) to 18 healthy male subjects in a pharmacokinetic interaction study for both drugs resulted in an increase of plasma concentrations of metoprolol by approximately 30 to 40% without altering the plasma concentrations of its active metabolite, α-hydroxymetoprolol. Metoprolol did not alter the pharmacokinetic profile of venlafaxine or its active metabolite, O-desmethylvenlafaxine. Venlafaxine appeared to reduce the blood pressure lowering effect of metoprolol in this study. The clinical relevance of this finding for hypertensive patients is unknown. Caution should be exercised with coadministration of venlafaxine and metoprolol. Venlafaxine treatment has been associated with dose-related increases in blood pressure in some patients. It is recommended that patients receiving venlafaxine tablets have regular monitoring of blood pressure (see WARNINGS ). Risperidone Venlafaxine administered under steady-state conditions at 150 mg/day slightly inhibited the CYP2D6-mediated metabolism of risperidone (administered as a single 1 mg oral dose) to its active metabolite, 9-hydroxyrisperidone, resulting in an approximate 32% increase in risperidone AUC. However, venlafaxine coadministration did not significantly alter the pharmacokinetic profile of the total active moiety (risperidone plus 9-hydroxyrisperidone). CYP3A4 Venlafaxine did not inhibit CYP3A4 in vitro. This finding was confirmed in vivo by clinical drug interaction studies in which venlafaxine did not inhibit the metabolism of several CYP3A4 substrates, including alprazolam, diazepam, and terfenadine. Indinavir In a study of 9 healthy volunteers, venlafaxine administered under steady-state conditions at 150 mg/day resulted in a 28% decrease in the AUC of a single 800 mg oral dose of indinavir and a 36% decrease in indinavir Cmax. Indinavir did not affect the pharmacokinetics of venlafaxine and ODV. The clinical significance of this finding is unknown. CYP1A2 Venlafaxine did not inhibit CYP1A2 in vitro. This finding was confirmed in vivo by a clinical drug interaction study in which venlafaxine did not inhibit the metabolism of caffeine, a CYP1A2 substrate. CYP2C9 Venlafaxine did not inhibit CYP2C9 in vitro. In vivo, venlafaxine 75 mg by mouth every 12 hours did not alter the pharmacokinetics of a single 500 mg dose of tolbutamide or the CYP2C9 mediated formation of 4-hydroxy-tolbutamide. CYP2C19 Venlafaxine did not inhibit the metabolism of diazepam which is partially metabolized by CYP2C19 (see Diazepam above). Monoamine Oxidase Inhibitors See CONTRAINDICATIONS . CNS-Active Drugs The risk of using venlafaxine in combination with other CNS-active drugs has not been systematically evaluated (except in the case of those CNS-active drugs noted above). Consequently, caution is advised if the concomitant administration of venlafaxine and such drugs is required. (see CONTRAINDICATIONS and WARNINGS )

More information

Category Value
Authorisation number ANDA077653
Agency product number 7D7RX5A8MO
Orphan designation No
Product NDC 68382-101,68382-018,68382-019,68382-021,68382-020
Date Last Revised 17-06-2017
Type HUMAN PRESCRIPTION DRUG
RXCUI 313582
Marketing authorisation holder Zydus Pharmaceuticals (USA) Inc.
Warnings Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of Major Depressive Disorder (MDD) and other psychiatric disorders. Anyone considering the use of venlafaxine tablets or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. Venlafaxine tablets are not approved for use in pediatric patients (see WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use).