Data from FDA (Food and Drug Administration, USA) - Curated by EPG Health - Last updated 31 December 2017

Indication(s)

INDICATIONS & USAGE Sojourn® (sevoflurane, USP) is indicated for induction and maintenance of general anesthesia in adult and pediatric patients for inpatient and outpatient surgery. Sojourn® (sevoflurane, USP) should be administered only by persons trained in the administration of general anesthesia. Facilities for maintenance of a patent airway, artificial ventilation, oxygen enrichment, and circulatory resuscitation must be immediately available. Since level of anesthesia may be altered rapidly, only vaporizers producing predictable concentrations of sevoflurane, USP should be used.

Learning Zones

An epgonline.org Learning Zone (LZ) is an area of the site dedicated to providing detailed self-directed medical education about a disease, condition or procedure.

ESICM LIVES Highlights

ESICM LIVES Highlights

ESICM LIVES Congress 2018: Bringing you the latest news and insights from the 31st ESICM LIVES Congress, 20–24 October 2018 Paris, France.

Fibrinogen Deficiency in Bleeding

Fibrinogen Deficiency in Bleeding

Fibrinogen is important for blood clot formation and breakdown. It is the first coagulant factor to be reduced to critical levels during massive trauma, cardiac surgery and postpartum haemorrhage that involve excessive bleeding. Persistent fibrinogen deficiency can lead to bleeding complications and an increased risk in mortality. This learning zone looks at both congenital and acquired fibrinogen deficiencies including indications and techniques for diagnosis, trigger level for treatment and treatment options.

Fluid Management

Fluid Management

Are you up-to-date with the latest evidence of effective procedures for fluid management?

+ 2 more

Load more

Related Content

Advisory information

contraindications
CONTRAINDICATIONS Sevoflurane can cause malignant hyperthermia. It should not be used in patients with known sensitivity to sevoflurane or to other halogenated agents nor in patients with known or suspected susceptibility to malignant hyperthermia.
Special warnings and precautions
PRECAUTIONS During the maintenance of anesthesia, increasing the concentration of sevoflurane produces dose-dependent decreases in blood pressure. Due to sevoflurane's insolubility in blood, these hemodynamic changes may occur more rapidly than with other volatile anesthetics. Excessive decreases in blood pressure or respiratory depression may be related to depth of anesthesia and may be corrected by decreasing the inspired concentration of sevoflurane. Rare cases of seizures have been reported in association with sevoflurane use (see PRECAUTIONS - Pediatric Use and ADVERSE REACTIONS ). The recovery from general anesthesia should be assessed carefully before a patient is discharged from the post-anesthesia care unit. Information for Patients Effect of anesthetic and sedation drugs on early brain development Studies conducted in young animals and children suggest repeated or prolonged use of general anesthetic or sedation drugs in children younger than 3 years may have negative effects on their developing brains. Discuss with parents and caregivers the benefits, risks, and timing and duration of surgery or procedures requiring anesthetic and sedation drugs (see WARNINGS – Pediatric Neurotoxicity). Drug Interactions In clinical trials, no significant adverse reactions occurred with other drugs commonly used in the perioperative period, including: central nervous system depressants, autonomic drugs, skeletal muscle relaxants, anti-infective agents, hormones and synthetic substitutes, blood derivatives, and cardiovascular drugs. Intravenous Anesthetics Sevoflurane administration is compatible with barbiturates, propofol, and other commonly used intravenous anesthetics. Benzodiazepines and Opioids Benzodiazepines and opioids would be expected to decrease the MAC of sevoflurane in the same manner as with other inhalational anesthetics. Sevoflurane administration is compatible with benzodiazepines and opioids as commonly used in surgical practice. Nitrous Oxide As with other halogenated volatile anesthetics, the anesthetic requirement for sevoflurane is decreased when administered in combination with nitrous oxide. Using 50% N 2O, the MAC equivalent dose requirement is reduced approximately 50% in adults, and approximately 25% in pediatric patients (see DOSAGE AND ADMINISTRATION). Neuromuscular Blocking Agents As is the case with other volatile anesthetics, sevoflurane increases both the intensity and duration of neuromuscular blockade induced by nondepolarizing muscle relaxants. When used to supplement alfentanil-N 2O anesthesia, sevoflurane and isoflurane equally potentiate neuromuscular block induced with pancuronium, vecuronium or atracurium. Therefore, during sevoflurane anesthesia, the dosage adjustments for these muscle relaxants are similar to those required with isoflurane. Potentiation of neuromuscular blocking agents requires equilibration of muscle with delivered partial pressure of sevoflurane. Reduced doses of neuromuscular blocking agents during induction of anesthesia may result in delayed onset of conditions suitable for endotracheal intubation or inadequate muscle relaxation. Among available nondepolarizing agents, only vecuronium, pancuronium and atracurium interactions have been studied during sevoflurane anesthesia. In the absence of specific guidelines: For endotracheal intubation, do not reduce the dose of nondepolarizing muscle relaxants. During maintenance of anesthesia, the required dose of nondepolarizing muscle relaxants is likely to be reduced compared to that during N 2O/opioid anesthesia. Administration of supplemental doses of muscle relaxants should be guided by the response to nerve stimulation. The effect of sevoflurane on the duration of depolarizing neuromuscular blockade induced by succinylcholine has not been studied. Hepatic Function Results of evaluations of laboratory parameters (e.g., ALT, AST, alkaline phosphatase, and total bilirubin, etc.) as well as investigator-reported incidence of adverse events relating to liver function, demonstrate that sevoflurane can be administered to patients with normal or mild-to-moderately impaired hepatic function. However, patients with severe hepatic dysfunction were not investigated. Occasional cases of transient changes in postoperative hepatic function tests were reported with both sevoflurane and reference agents. Sevoflurane was found to be comparable to isoflurane with regard to these changes in hepatic function. Very rare cases of mild, moderate and severe post-operative hepatic dysfunction or hepatitis with or without jaundice have been reported from postmarketing experiences. Clinical judgment should be exercised when sevoflurane is used in patients with underlying hepatic conditions or under treatment with drugs known to cause hepatic dysfunction (see ADVERSE REACTIONS). It has been reported that previous exposure to halogenated hydrocarbon anesthetics may increase the potential for hepatic injury . Desiccated CO 2 Absorbents An exothermic reaction occurs when sevoflurane is exposed to CO 2 absorbents. This reaction is increased when the CO 2 absorbent becomes desiccated, such as after an extended period of dry gas flow through the CO 2 absorbent canisters. Rare cases of extreme heat, smoke and/or spontaneous fire in the anesthesia breathing circuit have been reported during sevoflurane use in conjunction with the use of desiccated CO 2 absorbent, specifically those containing potassium hydroxide (e.g. Baralyme®). KOH containing CO 2 absorbents are not recommended for use with sevoflurane. An unusually delayed rise or unexpected decline of inspired sevoflurane concentration compared to the vaporizer setting may be associated with excessive heating of the CO 2 absorbent and chemical breakdown of sevoflurane. As with other inhalational anesthetics, degradation and production of degradation products can occur when sevoflurane is exposed to desiccated absorbents. When a clinician suspects that the CO 2 absorbent may be desiccated, it should be replaced. The color indicator of most CO 2 absorbents may not change upon desiccation. Therefore, the lack of significant color change should not be taken as an assurance of adequate hydration. CO 2 absorbents should be replaced routinely regardless of the state of the color indicator. Carcinogenesis & Mutagenesis & Impairment Of Fertility Carcinogenesis Studies on carcinogenesis have not been performed for either sevoflurane or Compound A. Mutagenesis No mutagenic effect of sevoflurane was noted in the Ames test, mouse micronucleus test, mouse lymphoma mutagenicity assay, human lymphocyte culture assay, mammalian cell transformation assay, 32P DNA adduct assay, and no chromosomal aberrations were induced in cultured mammalian cells. Similarly, no mutagenic effect of Compound A was noted in the Ames test, the Chinese hamster chromosomal aberration assay and the in vivo mouse micronucleus assay. However, positive responses were observed in the human lymphocyte chromosome aberration assay. These responses were seen only at high concentrations and in the absence of metabolic activation (human S-9). Impairment of Fertility In a study in which male rats were treated with sevoflurane (0.22%, 0.66%, 1.1%, or 2.2% equals 0.1, 0.3, 0.5, or 1.0 MAC) three hours per day every other day starting 64 days prior to mating and female rats were treated with the same dosing regimen 14 days prior to mating until Gestation Day 7, there was no clear impact on male or female fertility. Pregnancy Pregnancy Risk Summary There are no adequate and well-controlled studies in pregnant women. In animal reproduction studies, reduced fetal weights were noted following exposure to 1 MAC sevoflurane for three hours a day during organogenesis. Developmental and reproductive toxicity studies of sevoflurane in animals in the presence of strong alkalies (i.e., degradation of sevoflurane and production of Compound A) have not been conducted. Published studies in pregnant primates demonstrate that the administration of anesthetic and sedation drugs that block NMDA receptors and/or potentiate GABA activity during the period of peak brain development increases neuronal apoptosis in the developing brain of the offspring when used for longer than 3 hours. There are no data on pregnancy exposures in primates corresponding to periods prior to the third trimester in humans. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively. Data Animal Data Pregnant rats were treated with sevoflurane (0.22%, 0.66%, or 2.2% equals 0.1, 0.3, or 1.0 MAC) without CO 2 absorbent for three hours per day during organogenesis (from Gestation Day 7 to 17). Fetuses obtained by Cesarean section were examined on Gestation Day 20 while some animals were maintained for littering and pups were examined for adverse effects. There were no adverse effects on fetuses at 0.3 MAC. Reduced fetal body weights and increased skeletal variations such as delayed ossifications in the presence of maternal toxicity (reduced food and water intake and body weight of the dams) were noted at 1 MAC. In dams allowed to litter, reduced pup bodyweight gain and evidence of developmental delays (slight delay in eyelid opening and increased incidence of nonreactive animals in the visual placing reflex test) were noted in the 1.0 MAC treatment group. Pregnant rabbits were treated with sevoflurane (0.1, 0.3, or 1.0 MAC) without CO 2 absorbent for three hours per day during organogenesis (from Gestation Day 6 to 18). There were no adverse effects on the fetus at any dose; the mid- and high-dose produced a 5% and 6% decrease in maternal body weight, respectively. In another study, pregnant rats were administered sevoflurane (0.1, 0.3, or 1.0 MAC) from Gestation Day 17 to Postnatal Day 21. Pup body weights were reduced in the 1.0 MAC treatment group in the absence of maternal toxicity. There was no effect of sevoflurane on sensory function (visual, auditory, nociception, righting reflexes), motor (roto-rod), open field test, or learning tasks (shuttle box avoidance and water T-maze). In a published study in primates, administration of an anesthetic dose of ketamine for 24 hours on Gestation Day 122 increased neuronal apoptosis in the developing brain of the fetus. In other published studies, administration of either isoflurane or propofol for 5 hours on Gestation Day 120 resulted in increased neuronal and oligodendrocyte apoptosis in the developing brain of the offspring. With respect to brain development, this time period corresponds to the third trimester of gestation in the human. The clinical significance of these findings is not clear; however, studies in juvenile animals suggest neuroapoptosis correlates with long-term cognitive deficits (see WARNINGS – Pediatric Neurotoxicity, PRECAUTIONS – Pediatric Use, and ANIMAL TOXICOLOGY AND/OR PHARMACOLOGY). Labor & Delivery Sevoflurane has been used as part of general anesthesia for elective cesarean section in 29 women. There were no untoward effects in mother or neonate (see PHARMACODYNAMICS - Clinical Trials ). The safety of sevoflurane in labor and delivery has not been demonstrated. Nursing Mothers The concentrations of sevoflurane in milk are probably of no clinical importance 24 hours after anesthesia. Because of rapid washout, sevoflurane concentrations in milk are predicted to be below those found with many other volatile anesthetics. Geriatric Use MAC decreases with increasing age. The average concentration of sevoflurane to achieve MAC in an 80 year old is approximately 50% of that required in a 20 year old. Pediatric Use Induction and maintenance of general anesthesia with sevoflurane have been established in controlled clinical trials in pediatric patients aged 1 to 18 years (see PHARMACODYNAMICS - Clinical Trials and ADVERSE REACTIONS ). Sevoflurane has a non-pungent odor and is suitable for mask induction in pediatric patients. The concentration of sevoflurane required for maintenance of general anesthesia is age dependent. When used in combination with nitrous oxide, the MAC equivalent dose of sevoflurane should be reduced in pediatric patients. MAC in premature infants has not been determined. (see PRECAUTIONS - Drug Interactions and DOSAGE AND ADMINISTRATION for recommendations in pediatric patients 1 day of age and older). The use of sevoflurane has been associated with seizures (see PRECAUTIONS and ADVERSE REACTIONS ). The majority of these have occurred in children and young adults starting from 2 months of age, most of whom had no predisposing risk factors. Clinical judgment should be exercised when using sevoflurane in patients who may be at risk for seizures. Published juvenile animal studies demonstrate that the administration of anesthetic and sedation drugs, such as sevoflurane, that either block NMDA receptors or potentiate the activity of GABA during the period of rapid brain growth or synaptogenesis, results in widespread neuronal and oligodendrocyte cell loss in the developing brain and alterations in synaptic morphology and neurogenesis. Based on comparisons across species, the window of vulnerability to these changes is believed to correlate with exposures in the third trimester of gestation through the first several months of life, but may extend out to approximately 3 years of age in humans. In primates, exposure to 3 hours of ketamine that produced a light surgical plane of anesthesia did not increase neuronal cell loss; however, treatment regimens of 5 hours or longer of isoflurane increased neuronal cell loss. Data from isoflurane-treated rodents and ketamine-treated primates suggest that the neuronal and oligodendrocyte cell losses are associated with prolonged cognitive deficits in learning and memory. The clinical significance of these nonclinical findings is not known, and healthcare providers should balance the benefits of appropriate anesthesia in pregnant women, neonates, and young children who require procedures with the potential risks suggested by the nonclinical data (see WARNINGS – Pediatric Neurotoxicity , PRECAUTIONS – Pregnancy , and ANIMAL TOXICOLOGY AND/OR PHARMACOLOGY ). Laboratory Tests Transient elevations in glucose, liver function tests, and white blood cell count may occur as with use of other anesthetic agents. Safety and Handling Occupational Caution There is no specific work exposure limit established for sevoflurane. However, the National Institute for Occupational Safety and Health has recommended an 8- hour time-weighted average limit of 2 ppm for halogenated anesthetic agents in general (0.5 ppm when coupled with exposure to N 2O) (see ADVERSE REACTIONS). Storage Store at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F) [See USP Controlled Room Temperature].
Adverse reactions
ADVERSE REACTIONS Adverse events are derived from controlled clinical trials conducted in the United States, Canada, and Europe. The reference drugs were isoflurane, enflurane, and propofol in adults and halothane in pediatric patients. The studies were conducted using a variety of premedications, other anesthetics, and surgical procedures of varying length. Most adverse events reported were mild and transient, and may reflect the surgical procedures, patient characteristics (including disease) and/or medications administered. Of the 5182 patients enrolled in the clinical trials, 2906 were exposed to sevoflurane, including 118 adults and 507 pediatric patients who underwent mask induction. Each patient was counted once for each type of adverse event. Adverse events reported in patients in clinical trials and considered to be possibly or probably related to sevoflurane are presented within each body system in order of decreasing frequency in the following listings. One case of malignant hyperthermia was reported in pre-registration clinical trials. Adverse Events During the Induction Period (from Onset of Anesthesia by Mask Induction to Surgical Incision) Incidence >1% Adult Patients (N = 118) Cardiovascular: Bradycardia 5%, Hypotension 4%, Tachycardia 2% Nervous System: Agitation 7% Respiratory System: Laryngospasm 8%, Airway obstruction 8%, Breathholding 5%, Cough Increased 5% Pediatric Patients (N = 507) Cardiovascular: Tachycardia 6%, Hypotension 4% Nervous System: Agitation 15% Respiratory System: Breathholding 5%, Cough Increased 5%, Laryngospasm 3%, Apnea 2% Digestive System: Increased salivation 2% Adverse Events During Maintenance and Emergence Periods, Incidence >1% (N = 2906) Body as a whole: Fever 1%, Shivering 6%, Hypothermia 1%, Movement 1%, Headache 1% Cardiovascular: Hypotension 11%, Hypertension 2%, Bradycardia 5%, Tachycardia 2% Nervous System: Somnolence 9%, Agitation 9%, Dizziness 4%, Increased salivation 4% Digestive System: Nausea 25%, Vomiting 18% Respiratory System: Cough increased 11%, Breathholding 2%, Laryngospasm 2% Adverse Events, All Patients in Clinical Trials (N = 2906), All Anesthetic Periods, Incidence < 1% (reported in 3 or more patients) Body as a whole: Asthenia, Pain Cardiovascular: Arrhythmia, Ventricular Extrasystoles, Supraventricular Extrasystoles, Complete AV Block, Bigeminy, Hemorrhage, Inverted T Wave, Atrial Fibrillation, Atrial Arrhythmia, Second Degree AV Block, Syncope, S-T Depressed Nervous System: Crying, Nervousness, Confusion, Hypertonia, Dry Mouth, Insomnia Respiratory System: Sputum Increased, Apnea, Hypoxia, Wheezing, Bronchospasm, Hyperventilation, Pharyngitis, Hiccup, Hypoventilation, Dyspnea, Stridor Metabolism and Nutrition: Increases in LDH, AST, ALT, BUN, Alkaline Phosphatase, Creatinine, Bilirubinemia, Glycosuria, Fluorosis, Albuminuria, Hypophosphatemia, Acidosis, Hyperglycemia Hemic and Lymphatic System: Leucocytosis, Thrombocytopenia Skin and Special Senses: Amblyopia, Pruritus, Taste Perversion, Rash, Conjunctivitis Urogenital: Urination Impaired, Urine Abnormality, Urinary Retention, Oliguria See WARNINGS for information regarding malignant hyperthermia. Post-Marketing Adverse Events The following adverse events have been identified during post-approval use of sevoflurane. Due to the spontaneous nature of these reports, the actual incidence and relationship of sevoflurane to these events cannot be established with certainty. Central Nervous System Seizures – Post-marketing reports indicate that sevoflurane use has been associated with seizures. The majority of cases were in children and young adults, most of whom had no medical history of seizures. Several cases reported no concomitant medications, and at least one case was confirmed by EEG. Although many cases were single seizures that resolved spontaneously or after treatment, cases of multiple seizures have also been reported. Seizures have occurred during, or soon after sevoflurane induction, during emergence, and during post-operative recovery up to a day following anesthesia. Cardiac Cardiac arrest Hepatic Cases of mild, moderate and severe post-operative hepatic dysfunction or hepatitis with or without jaundice have been reported. Histological evidence was not provided for any of the reported hepatitis cases. In most of these cases, patients had underlying hepatic conditions or were under treatment with drugs known to cause hepatic dysfunction. Most of the reported events were transient and resolved spontaneously (see PRECAUTIONS). Hepatic necrosis Hepatic failure Other Malignant hyperthermia (see CONTRAINDICATIONS and WARNINGS) Allergic reactions, such as rash, urticaria, pruritis, bronchospasm, anaphylactic or anaphylactoid reactions (see CONTRAINDICATIONS) Reports of hypersensitivity (including contact dermatitis, rash, dyspnea, wheezing, chest discomfort, swelling face, or anaphylactic reaction) have been received, particularly in association with long-term occupational exposure to inhaled anesthetic agents, including sevoflurane (see OCCUPATIONAL CAUTION).

Usage information

Dosing and administration
DOSAGE & ADMINISTRATION The concentration of sevoflurane being delivered from a vaporizer during anesthesia should be known. This may be accomplished by using a vaporizer calibrated specifically for sevoflurane. The administration of general anesthesia must be individualized based on the patient's response. Replacement of Desiccated CO 2 Absorbents : When a clinician suspects that the CO 2 absorbent may be desiccated, it should be replaced. The exothermic reaction that occurs with sevoflurane and CO 2 absorbents is increased when the CO 2 absorbents become desiccated, such as after an extended period of dry gas flow through the CO 2 absorbent canisters (see PRECAUTIONS ). Pre-anesthetic Medication : No specific pre-medication is either indicated or contraindicated with sevoflurane. The decision as to whether or not to premedicate and the choice of pre-medication is left to the discretion of the anesthesiologist. Induction : Sevoflurane has a non-pungent odor and does not cause respiratory irritability; it is suitable for mask induction in pediatrics and adults. Maintenance : Surgical levels of anesthesia can usually be achieved with concentrations of 0.5 - 3 % sevoflurane with or without the concomitant use of nitrous oxide. Sevoflurane can be administered with any type of anesthesia circuit. Table 9: MAC Values for Adults and Pediatric Patients According to Age Age of Patient (years) Sevoflurane in Oxygen Sevoflurane in 65% N 2O/35% O 2 0 - 1 months # 3.3% 1 - < 6 months 3.0% 6 months - < 3 years 2.8% 2.0%@ 3 - 12 2.5% 25 2.6% 1.4% 40 2.1% 1.1% 60 1.7% 0.9% 80 1.4% 0.7% # Neonates are full-term gestational age. MAC in premature infants has not been determined. @ In 1 - < 3 year old pediatric patients, 60% N 2O/40% O 2 was used.
Pregnancy and lactation
Nursing Mothers The concentrations of sevoflurane in milk are probably of no clinical importance 24 hours after anesthesia. Because of rapid washout, sevoflurane concentrations in milk are predicted to be below those found with many other volatile anesthetics.

Interactions

Drug Interactions In clinical trials, no significant adverse reactions occurred with other drugs commonly used in the perioperative period, including: central nervous system depressants, autonomic drugs, skeletal muscle relaxants, anti-infective agents, hormones and synthetic substitutes, blood derivatives, and cardiovascular drugs. Intravenous Anesthetics Sevoflurane administration is compatible with barbiturates, propofol, and other commonly used intravenous anesthetics. Benzodiazepines and Opioids Benzodiazepines and opioids would be expected to decrease the MAC of sevoflurane in the same manner as with other inhalational anesthetics. Sevoflurane administration is compatible with benzodiazepines and opioids as commonly used in surgical practice. Nitrous Oxide As with other halogenated volatile anesthetics, the anesthetic requirement for sevoflurane is decreased when administered in combination with nitrous oxide. Using 50% N 2O, the MAC equivalent dose requirement is reduced approximately 50% in adults, and approximately 25% in pediatric patients (see DOSAGE AND ADMINISTRATION). Neuromuscular Blocking Agents As is the case with other volatile anesthetics, sevoflurane increases both the intensity and duration of neuromuscular blockade induced by nondepolarizing muscle relaxants. When used to supplement alfentanil-N 2O anesthesia, sevoflurane and isoflurane equally potentiate neuromuscular block induced with pancuronium, vecuronium or atracurium. Therefore, during sevoflurane anesthesia, the dosage adjustments for these muscle relaxants are similar to those required with isoflurane. Potentiation of neuromuscular blocking agents requires equilibration of muscle with delivered partial pressure of sevoflurane. Reduced doses of neuromuscular blocking agents during induction of anesthesia may result in delayed onset of conditions suitable for endotracheal intubation or inadequate muscle relaxation. Among available nondepolarizing agents, only vecuronium, pancuronium and atracurium interactions have been studied during sevoflurane anesthesia. In the absence of specific guidelines: For endotracheal intubation, do not reduce the dose of nondepolarizing muscle relaxants. During maintenance of anesthesia, the required dose of nondepolarizing muscle relaxants is likely to be reduced compared to that during N 2O/opioid anesthesia. Administration of supplemental doses of muscle relaxants should be guided by the response to nerve stimulation. The effect of sevoflurane on the duration of depolarizing neuromuscular blockade induced by succinylcholine has not been studied. Hepatic Function Results of evaluations of laboratory parameters (e.g., ALT, AST, alkaline phosphatase, and total bilirubin, etc.) as well as investigator-reported incidence of adverse events relating to liver function, demonstrate that sevoflurane can be administered to patients with normal or mild-to-moderately impaired hepatic function. However, patients with severe hepatic dysfunction were not investigated. Occasional cases of transient changes in postoperative hepatic function tests were reported with both sevoflurane and reference agents. Sevoflurane was found to be comparable to isoflurane with regard to these changes in hepatic function. Very rare cases of mild, moderate and severe post-operative hepatic dysfunction or hepatitis with or without jaundice have been reported from postmarketing experiences. Clinical judgment should be exercised when sevoflurane is used in patients with underlying hepatic conditions or under treatment with drugs known to cause hepatic dysfunction (see ADVERSE REACTIONS). It has been reported that previous exposure to halogenated hydrocarbon anesthetics may increase the potential for hepatic injury . Desiccated CO 2 Absorbents An exothermic reaction occurs when sevoflurane is exposed to CO 2 absorbents. This reaction is increased when the CO 2 absorbent becomes desiccated, such as after an extended period of dry gas flow through the CO 2 absorbent canisters. Rare cases of extreme heat, smoke and/or spontaneous fire in the anesthesia breathing circuit have been reported during sevoflurane use in conjunction with the use of desiccated CO 2 absorbent, specifically those containing potassium hydroxide (e.g. Baralyme®). KOH containing CO 2 absorbents are not recommended for use with sevoflurane. An unusually delayed rise or unexpected decline of inspired sevoflurane concentration compared to the vaporizer setting may be associated with excessive heating of the CO 2 absorbent and chemical breakdown of sevoflurane. As with other inhalational anesthetics, degradation and production of degradation products can occur when sevoflurane is exposed to desiccated absorbents. When a clinician suspects that the CO 2 absorbent may be desiccated, it should be replaced. The color indicator of most CO 2 absorbents may not change upon desiccation. Therefore, the lack of significant color change should not be taken as an assurance of adequate hydration. CO 2 absorbents should be replaced routinely regardless of the state of the color indicator.

More information

Category Value
Authorisation number ANDA077867
Agency product number 38LVP0K73A
Orphan designation No
Product NDC 66794-012
Date Last Revised 27-12-2017
Type HUMAN PRESCRIPTION DRUG
Marketing authorisation holder Piramal Critical Care Inc