Data from FDA (Food and Drug Administration, USA) - Curated by EPG Health - Last updated 25 January 2018

Indication(s)

1 INDICATIONS AND USAGE LEVO-T is L-thyroxine (T 4) indicated for: Hypothyroidism: As replacement therapy in primary (thyroidal), secondary (pituitary), and tertiary (hypothalamic) congenital or acquired hypothyroidism. ( 1) Pituitary Thyrotropin (Thyroid-Stimulating Hormone, TSH) Suppression: As an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer. ( 1) Limitations of Use: Not indicated for suppression of benign thyroid nodules and nontoxic diffuse goiter in iodine-sufficient patients. Not indicated for treatment of hypothyroidism during the recovery phase of subacute thyroiditis. Hypothyroidism LEVO-T is indicated as a replacement therapy in primary (thyroidal), secondary (pituitary), and tertiary (hypothalamic) congenital or acquired hypothyroidism. Pituitary Thyrotropin (Thyroid-Stimulating Hormone, TSH) Suppression LEVO-T is indicated as an adjunct to surgery and radioiodine therapy in the management of thyrotropin-dependent well-differentiated thyroid cancer. Limitations of Use: LEVO-T is not indicated for suppression of benign thyroid nodules and nontoxic diffuse goiter in iodine-sufficient patients as there are no clinical benefits and overtreatment with LEVO-T may induce hyperthyroidism [see Warnings and Precautions (5.4)]. LEVO-T is not indicated for treatment of hypothyroidism during the recovery phase of subacute thyroiditis.

Learning Zones

An epgonline.org Learning Zone (LZ) is an area of the site dedicated to providing detailed self-directed medical education about a disease, condition or procedure.

Acute and Advanced Heart Failure

Acute and Advanced Heart Failure

What are the most effective treatments for acute heart failure? Can you define advanced heart failure? Discover here...

+ 3 more

Pain, Agitation and Delirium (PAD) Management

Pain, Agitation and Delirium (PAD) Management

Discover the latest guidance on assessment and management of pain, agitation and delirium for patients requiring sedation.

+ 4 more

Cushing's Syndrome

Cushing's Syndrome

Cushing’s syndrome shares symptoms such as hypertension, glucose intolerance and obesity with other common conditions – how can you confidently diagnose this rare disorder?

+ 2 more

Load more

Related Content

Advisory information

contraindications
4 CONTRAINDICATIONS LEVO-T is contraindicated in patients with uncorrected adrenal insufficiency [see Warnings and Precautions (5.3)] . Uncorrected adrenal insufficiency. ( 4)
Adverse reactions
6 ADVERSE REACTIONS Adverse reactions associated with LEVO-T therapy are primarily those of hyperthyroidism due to therapeutic overdosage [see Warnings and Precautions (5) , Overdosage (10)] . They include the following: General: fatigue, increased appetite, weight loss, heat intolerance, fever, excessive sweating Central nervous system: headache, hyperactivity, nervousness, anxiety, irritability, emotional lability, insomnia Musculoskeletal: tremors, muscle weakness, muscle spasm Cardiovascular: palpitations, tachycardia, arrhythmias, increased pulse and blood pressure, heart failure, angina, myocardial infarction, cardiac arrest Respiratory: dyspnea Gastrointestinal: diarrhea, vomiting, abdominal cramps, elevations in liver function tests Dermatologic: hair loss, flushing, rash Endocrine: decreased bone mineral density Reproductive: menstrual irregularities, impaired fertility Seizures have been reported rarely with the institution of levothyroxine therapy. Adverse reactions associated with LEVO-T therapy are primarily those of hyperthyroidism due to therapeutic overdosage: arrhythmias, myocardial infarction, dyspnea, muscle spasm, headache, nervousness, irritability, insomnia, tremors, muscle weakness, increased appetite, weight loss, diarrhea, heat intolerance, menstrual irregularities, and skin rash. ( 6) To report SUSPECTED ADVERSE REACTIONS, contact Neolpharma, Inc. at 1-844-200-4163 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch . Adverse Reactions in Children Pseudotumor cerebri and slipped capital femoral epiphysis have been reported in children receiving levothyroxine therapy. Overtreatment may result in craniosynostosis in infants and premature closure of the epiphyses in children with resultant compromised adult height. Hypersensitivity Reactions Hypersensitivity reactions to inactive ingredients have occurred in patients treated with thyroid hormone products. These include urticaria, pruritus, skin rash, flushing, angioedema, various gastrointestinal symptoms (abdominal pain, nausea, vomiting and diarrhea), fever, arthralgia, serum sickness, and wheezing. Hypersensitivity to levothyroxine itself is not known to occur.

Usage information

Dosing and administration
2 DOSAGE AND ADMINISTRATION Administer once daily, preferably on an empty stomach, one-half to one hour before breakfast. ( 2.1) Administer at least 4 hours before or after drugs that are known to interfere with absorption. ( 2.1) Evaluate the need for dose adjustments when regularly administering within one hour of certain foods that may affect absorption. ( 2.1) Starting dose depends on a variety of factors, including age, body weight, cardiovascular status, and concomitant medications. Peak therapeutic effect may not be attained for 4-6 weeks. ( 2.2) See full prescribing information for dosing in specific patient populations. ( 2.3) Adequacy of therapy determined with periodic monitoring of TSH and/or T4 as well as clinical status. ( 2.4) 2.1 General Administration Information Take LEVO-T with a full glass of water as the tablet may rapidly disintegrate . Administer LEVO-T as a single daily dose, on an empty stomach, one-half to one hour before breakfast. Administer LEVO-T at least 4 hours before or after drugs known to interfere with LEVO-T absorption [see Drug Interactions (7.1)] . Evaluate the need for dose adjustments when regularly administering within one hour of certain foods that may affect LEVO-T absorption [see Drug Interactions (7.9) and Clinical Pharmacology (12.3)] . Administer LEVO-T to infants and children who cannot swallow intact tablets by crushing the tablet, suspending the freshly crushed tablet in a small amount (5 to 10 mL or 1 to 2 teaspoons) of water and immediately administering the suspension by spoon or dropper. Do not store the suspension. Do not administer in foods that decrease absorption of LEVO-T, such as soybean-based infant formula [see Drug Interactions (7.9)] . 2.2 General Principles of Dosing The dose of LEVO-T for hypothyroidism or pituitary TSH suppression depends on a variety of factors including: the patient's age, body weight, cardiovascular status, concomitant medical conditions (including pregnancy), concomitant medications, co-administered food and the specific nature of the condition being treated [see Dosage and Administration (2.3), Warnings and Precautions (5) , and Drug Interactions (7)] . Dosing must be individualized to account for these factors and dose adjustments made based on periodic assessment of the patient's clinical response and laboratory parameters [see Dosage and Administration (2.4)] . The peak therapeutic effect of a given dose of LEVO-T may not be attained for 4 to 6 weeks. 2.3 Dosing in Specific Patient Populations Primary Hypothyroidism in Adults and in Adolescents in Whom Growth and Puberty are Complete Start LEVO-T at the full replacement dose in otherwise healthy, non-elderly individuals who have been hypothyroid for only a short time (such as a few months). The average full replacement dose of LEVO-T is approximately 1.6 mcg per kg per day (for example: 100 to 125 mcg per day for a 70 kg adult). Adjust the dose by 12.5 to 25 mcg increments every 4 to 6 weeks until the patient is clinically euthyroid and the serum TSH returns to normal. Doses greater than 200 mcg per day are seldom required. An inadequate response to daily doses of greater than 300 mcg per day is rare and may indicate poor compliance, malabsorption, drug interactions, or a combination of these factors. For elderly patients or patients with underlying cardiac disease, start with a dose of 12.5 to 25 mcg per day. Increase the dose every 6 to 8 weeks, as needed until the patient is clinically euthyroid and the serum TSH returns to normal. The full replacement dose of LEVO-T may be less than 1 mcg per kg per day in elderly patients. In patients with severe longstanding hypothyroidism, start with a dose of 12.5 to 25 mcg per day. Adjust the dose in 12.5 to 25 mcg increments every 2 to 4 weeks until the patient is clinically euthyroid and the serum TSH level is normalized. Secondary or Tertiary Hypothyroidism Start LEVO-T at the full replacement dose in otherwise healthy, non-elderly individuals. Start with a lower dose in elderly patients, patients with underlying cardiovascular disease or patients with severe longstanding hypothyroidism as described above. Serum TSH is not a reliable measure of LEVO-T dose adequacy in patients with secondary or tertiary hypothyroidism and should not be used to monitor therapy. Use the serum free-T4 level to monitor adequacy of therapy in this patient population. Titrate LEVO-T dosing per above instructions until the patient is clinically euthyroid and the serum free-T4 level is restored to the upper half of the normal range. Pediatric Dosage - Congenital or Acquired Hypothyroidism The recommended daily dose of LEVO-T in pediatric patients with hypothyroidism is based on body weight and changes with age as described in Table 1. Start LEVO-T at the full daily dose in most pediatric patients. Start at a lower starting dose in newborns (0-3 months) at risk for cardiac failure and in children at risk for hyperactivity (see below). Monitor for clinical and laboratory response [see Dosage and Administration (2.4)]. Table 1. LEVO-T Dosing Guidelines for Pediatric Hypothyroidism AGE Daily Dose Per Kg Body Weight The dose should be adjusted based on clinical response and laboratory parameters [see Dosage and Administration (2.4) and Use in Specific Populations (8.4)] . 0-3 months 10-15 mcg/kg/day 3-6 months 8-10 mcg/kg/day 6-12 months 6-8 mcg/kg/day 1-5 years 5-6 mcg/kg/day 6-12 years 4-5 mcg/kg/day Greater than 12 years but growth and puberty incomplete 2-3 mcg/kg/day Growth and puberty complete 1.6 mcg/kg/day Newborns (0-3 months) at risk for cardiac failure: Consider a lower starting dose in newborns at risk for cardiac failure. Increase the dose every 4 to 6 weeks as needed based on clinical and laboratory response. Children at risk for hyperactivity: To minimize the risk of hyperactivity in children, start at one-fourth the recommended full replacement dose, and increase on a weekly basis by one-fourth the full recommended replacement dose until the full recommended replacement dose is reached. Pregnancy Pre-existing Hypothyroidism: LEVO-T dose requirements may increase during pregnancy. Measure serum TSH and free-T4 as soon as pregnancy is confirmed and, at minimum, during each trimester of pregnancy. In patients with primary hypothyroidism, maintain serum TSH in the trimester-specific reference range. For patients with serum TSH above the normal trimester-specific range, increase the dose of LEVO-T by 12.5 to 25 mcg/day and measure TSH every 4 weeks until a stable LEVO-T dose is reached and serum TSH is within the normal trimester-specific range. Reduce LEVO-T dosage to pre-pregnancy levels immediately after delivery and measure serum TSH levels 4 to 8 weeks postpartum to ensure LEVO-T dose is appropriate. New Onset Hypothyroidism: Normalize thyroid function as rapidly as possible. In patients with moderate to severe signs and symptoms of hypothyroidism, start LEVO-T at the full replacement dose (1.6 mcg per kg body weight per day). In patients with mild hypothyroidism (TSH < 10 IU per liter) start LEVO-T at 1.0 mcg per kg body weight per day. Evaluate serum TSH every 4 weeks and adjust LEVO-T dosage until a serum TSH is within the normal trimester specific range [see Use in Specific Populations (8.1)] . TSH Suppression in Well-differentiated Thyroid Cancer Generally, TSH is suppressed to below 0.1 IU per liter, and this usually requires a LEVO-T dose of greater than 2 mcg per kg per day. However, in patients with high-risk tumors, the target level for TSH suppression may be lower. 2.4 Monitoring TSH and/or Thyroxine (T4) Levels Assess the adequacy of therapy by periodic assessment of laboratory tests and clinical evaluation. Persistent clinical and laboratory evidence of hypothyroidism despite an apparent adequate replacement dose of LEVO-T may be evidence of inadequate absorption, poor compliance, drug interactions, or a combination of these factors. Adults In adult patients with primary hypothyroidism, monitor serum TSH levels after an interval of 6 to 8 weeks after any change in dose. In patients on a stable and appropriate replacement dose, evaluate clinical and biochemical response every 6 to 12 months and whenever there is a change in the patient's clinical status. Pediatrics In patients with congenital hypothyroidism, assess the adequacy of replacement therapy by measuring both serum TSH and total or free-T4. Monitor TSH and total or free-T4 in children as follows: 2 and 4 weeks after the initiation of treatment, 2 weeks after any change in dosage, and then every 3 to 12 months thereafter following dose stabilization until growth is completed. Poor compliance or abnormal values may necessitate more frequent monitoring. Perform routine clinical examination, including assessment of development, mental and physical growth, and bone maturation, at regular intervals. While the general aim of therapy is to normalize the serum TSH level, TSH may not normalize in some patients due to in utero hypothyroidism causing a resetting of pituitary-thyroid feedback. Failure of the serum T4 to increase into the upper half of the normal range within 2 weeks of initiation of LEVO-T therapy and/or of the serum TSH to decrease below 20 IU per liter within 4 weeks may indicate the child is not receiving adequate therapy. Assess compliance, dose of medication administered, and method of administration prior to increasing the dose of LEVO-T [see Warnings and Precautions (5.1) and Use in Specific Populations (8.4)] . Secondary and Tertiary Hypothyroidism Monitor serum free-T4 levels and maintain in the upper half of the normal range in these patients.
Use in special populations
8 USE IN SPECIFIC POPULATIONS Pregnancy may require the use of higher doses of LEVO-T. ( 2.3, 8.1) 8.1 Pregnancy Risk Summary Experience with levothyroxine use in pregnant women, including data from post-marketing studies, have not reported increased rates of major birth defects or miscarriages [see Data]. There are risks to the mother and fetus associated with untreated hypothyroidism in pregnancy. Since TSH levels may increase during pregnancy, TSH should be monitored and LEVO-T dosage adjusted during pregnancy [see Clinical Considerations] . There are no animal studies conducted with levothyroxine during pregnancy. LEVO-T should not be discontinued during pregnancy and hypothyroidism diagnosed during pregnancy should be promptly treated. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Clinical Considerations Disease-Associated Maternal and/or Embryo/Fetal Risk Maternal hypothyroidism during pregnancy is associated with a higher rate of complications, including spontaneous abortion, gestational hypertension, pre-eclampsia, stillbirth, and premature delivery. Untreated maternal hypothyroidism may have an adverse effect on fetal neurocognitive development. Dose Adjustments During Pregnancy and the Postpartum Period Pregnancy may increase LEVO-T requirements. Serum TSH levels should be monitored and the LEVO-T dosage adjusted during pregnancy. Since postpartum TSH levels are similar to preconception values, the LEVO-T dosage should return to the pre-pregnancy dose immediately after delivery [see Dosage and Administration (2.3)]. Data Human Data Levothyroxine is approved for use as a replacement therapy for hypothyroidism. There is a long experience of levothyroxine use in pregnant women, including data from post-marketing studies that have not reported increased rates of fetal malformations, miscarriages or other adverse maternal or fetal outcomes associated with levothyroxine use in pregnant women. 8.2 Lactation Risk Summary Limited published studies report that levothyroxine is present in human milk. However, there is insufficient information to determine the effects of Levothyroxine on the breastfed infant and no available information on the effects of levothyroxine on milk production. Adequate levothyroxine treatment during lactation may normalize milk production in hypothyroid lactating mothers. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for LEVO-T and any potential adverse effects on the breastfed infant from LEVO-T or from the underlying maternal condition. 8.4 Pediatric Use The initial dose of LEVO-T varies with age and body weight. Dosing adjustments are based on an assessment of the individual patient's clinical and laboratory parameters [see Dosage and Administration (2.3, 2.4)] . In children in whom a diagnosis of permanent hypothyroidism has not been established, discontinue LEVO-T administration for a trial period, but only after the child is at least 3 years of age. Obtain serum T4 and TSH levels at the end of the trial period, and use laboratory test results and clinical assessment to guide diagnosis and treatment, if warranted. Congenital Hypothyroidism [See Dosage and Administration (2.3, 2.4)] Rapid restoration of normal serum T4 concentrations is essential for preventing the adverse effects of congenital hypothyroidism on intellectual development as well as on overall physical growth and maturation. Therefore, initiate LEVO-T therapy immediately upon diagnosis. Levothyroxine is generally continued for life in these patients. Closely monitor infants during the first 2 weeks of LEVO-T therapy for cardiac overload, arrhythmias, and aspiration from avid suckling. Closely monitor patients to avoid undertreatment or overtreatment. Undertreatment may have deleterious effects on intellectual development and linear growth. Overtreatment is associated with craniosynostosis in infants, may adversely affect the tempo of brain maturation, and may accelerate the bone age and result in premature epiphyseal closure and compromised adult stature. Acquired Hypothyroidism in Pediatric Patients Closely monitor patients to avoid undertreatment and overtreatment. Undertreatment may result in poor school performance due to impaired concentration and slowed mentation and in reduced adult height. Overtreatment may accelerate the bone age and result in premature epiphyseal closure and compromised adult stature. Treated children may manifest a period of catch-up growth, which may be adequate in some cases to normalize adult height. In children with severe or prolonged hypothyroidism, catch-up growth may not be adequate to normalize adult height. 8.5 Geriatric Use Because of the increased prevalence of cardiovascular disease among the elderly, initiate LEVO-T at less than the full replacement dose [see Warnings and Precautions (5.1) and Dosage and Administration (2.3)] . Atrial arrhythmias can occur in elderly patients. Atrial fibrillation is the most common of the arrhythmias observed with levothyroxine overtreatment in the elderly.

Interactions

7 DRUG INTERACTIONS See full prescribing information for drugs that affect thyroid hormone pharmacokinetics and metabolism (e.g., absorption, synthesis, secretion, catabolism, protein binding, and target tissue response) and may alter the therapeutic response to LEVO-T. ( 7) 7.1 Drugs Known to Affect Thyroid Hormone Pharmacokinetics Many drugs can exert effects on thyroid hormone pharmacokinetics and metabolism (e.g., absorption, synthesis, secretion, catabolism, protein binding, and target tissue response) and may alter the therapeutic response to LEVO-T (see Tables 2-5 below). Table 2. Drugs That May Decrease T4 Absorption (Hypothyroidism) Potential impact: Concurrent use may reduce the efficacy of LEVO-T by binding and delaying or preventing absorption, potentially resulting in hypothyroidism. Drug or Drug Class Effect Calcium Carbonate Ferrous Sulfate Calcium carbonate may form an insoluble chelate with levothyroxine, and ferrous sulfate likely forms a ferric-thyroxine complex. Administer LEVO-T at least 4 hours apart from these agents. Orlistat Monitor patients treated concomitantly with orlistat and LEVO-T for changes in thyroid function. Bile Acid Sequestrants -Colesevelam -Cholestyramine -Colestipol Ion Exchange Resins -Kayexalate -Sevelamer Bile acid sequestrants and ion exchange resins are known to decrease levothyroxine absorption. Administer LEVO-T at least 4 hours prior to these drugs or monitor TSH levels. Other drugs: Proton Pump Inhibitors Sucralfate Antacids - Aluminum & Magnesium Hydroxides - Simethicone Gastric acidity is an essential requirement for adequate absorption of levothyroxine. Sucralfate, antacids and proton pump inhibitors may cause hypochlorhydria, affect intragastric pH, and reduce levothyroxine absorption. Monitor patients appropriately. Table 3. Drugs That May Alter T4 and Triiodothyronine (T3) Serum Transport Without Affecting Free Thyroxine (FT4) Concentration (Euthyroidism) Drug or Drug Class Effect Clofibrate Estrogen-containing oral contraceptives Estrogens (oral) Heroin / Methadone 5-Fluorouracil Mitotane Tamoxifen These drugs may increase serum thyroxine-binding globulin (TBG) concentration. Androgens / Anabolic Steroids Asparaginase Glucocorticoids Slow-Release Nicotinic Acid These drugs may decrease serum TBG concentration. Potential impact (below): Administration of these agents with LEVO-T results in an initial transient increase in FT4. Continued administration results in a decrease in serum T4 and normal FT4 and TSH concentrations. Salicylates (> 2 g/day) Salicylates inhibit binding of T4 and T3 to TBG and transthyretin. An initial increase in serum FT4 is followed by return of FT4 to normal levels with sustained therapeutic serum salicylate concentrations, although total T4 levels may decrease by as much as 30%. Other drugs: Carbamazepine Furosemide (> 80 mg IV) Heparin Hydantoins Non-Steroidal Anti-inflammatory Drugs -Fenamates These drugs may cause protein-binding site displacement. Furosemide has been shown to inhibit the protein binding of T4 to TBG and albumin, causing an increase free T4 fraction in serum. Furosemide competes for T4-binding sites on TBG, prealbumin, and albumin, so that a single high dose can acutely lower the total T4 level. Phenytoin and carbamazepine reduce serum protein binding of levothyroxine, and total and free T4 may be reduced by 20% to 40%, but most patients have normal serum TSH levels and are clinically euthyroid. Closely monitor thyroid hormone parameters. Table 4. Drugs That May Alter Hepatic Metabolism of T4 (Hypothyroidism) Potential impact: Stimulation of hepatic microsomal drug-metabolizing enzyme activity may cause increased hepatic degradation of levothyroxine, resulting in increased LEVO-T requirements. Drug or Drug Class Effect Phenobarbital Rifampin Phenobarbital has been shown to reduce the response to thyroxine. Phenobarbital increases L-thyroxine metabolism by inducing uridine 5'-diphospho-glucuronosyltransferase (UGT) and leads to a lower T4 serum levels. Changes in thyroid status may occur if barbiturates are added or withdrawn from patients being treated for hypothyroidism. Rifampin has been shown to accelerate the metabolism of levothyroxine. Table 5. Drugs That May Decrease Conversion of T4 to T3 Potential impact: Administration of these enzyme inhibitors decreases the peripheral conversion of T4 to T3, leading to decreased T3 levels. However, serum T4 levels are usually normal but may occasionally be slightly increased. Drug or Drug Class Effect Beta-adrenergic antagonists (e.g., Propranolol > 160 mg/day) In patients treated with large doses of propranolol (> 160 mg/day), T3 and T4 levels change, TSH levels remain normal, and patients are clinically euthyroid. Actions of particular beta-adrenergic antagonists may be impaired when a hypothyroid patient is converted to the euthyroid state. Glucocorticoids (e.g., Dexamethasone ≥ 4 mg/day) Short-term administration of large doses of glucocorticoids may decrease serum T3 concentrations by 30% with minimal change in serum T4 levels. However, long-term glucocorticoid therapy may result in slightly decreased T3 and T4 levels due to decreased TBG production (See above). Other drugs: Amiodarone Amiodarone inhibits peripheral conversion of levothyroxine (T4) to triiodothyronine (T3) and may cause isolated biochemical changes (increase in serum free-T4, and decreased or normal free-T3) in clinically euthyroid patients. 7.2 Antidiabetic Therapy Addition of LEVO-T therapy in patients with diabetes mellitus may worsen glycemic control and result in increased antidiabetic agent or insulin requirements. Carefully monitor glycemic control, especially when thyroid therapy is started, changed, or discontinued [see Warnings and Precautions (5.5)]. 7.3 Oral Anticoagulants LEVO-T increases the response to oral anticoagulant therapy. Therefore, a decrease in the dose of anticoagulant may be warranted with correction of the hypothyroid state or when the LEVO-T dose is increased. Closely monitor coagulation tests to permit appropriate and timely dosage adjustments. 7.4 Digitalis Glycosides LEVO-T may reduce the therapeutic effects of digitalis glycosides. Serum digitalis glycoside levels may decrease when a hypothyroid patient becomes euthyroid, necessitating an increase in the dose of digitalis glycosides. 7.5 Antidepressant Therapy Concurrent use of tricyclic (e.g., amitriptyline) or tetracyclic (e.g., maprotiline) antidepressants and LEVO-T may increase the therapeutic and toxic effects of both drugs, possibly due to increased receptor sensitivity to catecholamines. Toxic effects may include increased risk of cardiac arrhythmias and central nervous system stimulation. LEVO-T may accelerate the onset of action of tricyclics. Administration of sertraline in patients stabilized on LEVO-T may result in increased LEVO-T requirements. 7.6 Ketamine Concurrent use of ketamine and LEVO-T may produce marked hypertension and tachycardia. Closely monitor blood pressure and heart rate in these patients. 7.7 Sympathomimetics Concurrent use of sympathomimetics and LEVO-T may increase the effects of sympathomimetics or thyroid hormone. Thyroid hormones may increase the risk of coronary insufficiency when sympathomimetic agents are administered to patients with coronary artery disease. 7.8 Tyrosine-Kinase Inhibitors Concurrent use of tyrosine-kinase inhibitors such as imatinib may cause hypothyroidism. Closely monitor TSH levels in such patients. 7.9 Drug-Food Interactions Consumption of certain foods may affect LEVO-T absorption thereby necessitating adjustments in dosing [see Dosage and Administration (2.1)] . Soybean flour, cottonseed meal, walnuts, and dietary fiber may bind and decrease the absorption of LEVO-T from the gastrointestinal tract. Grapefruit juice may delay the absorption of levothyroxine and reduce its bioavailability. 7.10 Drug-Laboratory Test Interactions Consider changes in TBG concentration when interpreting T4 and T3 values. Measure and evaluate unbound (free) hormone and/or determine the free-T4 index (FT4I) in this circumstance. Pregnancy, infectious hepatitis, estrogens, estrogen-containing oral contraceptives, and acute intermittent porphyria increase TBG concentration. Nephrosis, severe hypoproteinemia, severe liver disease, acromegaly, androgens, and corticosteroids decrease TBG concentration. Familial hyper- or hypo-thyroxine binding globulinemias have been described, with the incidence of TBG deficiency approximating 1 in 9000.

More information

Category Value
Authorisation number NDA021342
Agency product number 9J765S329G
Orphan designation No
Product NDC 55466-115,55466-109,55466-108,55466-105,55466-104,55466-107,55466-106,55466-112,55466-113,55466-110,55466-111,55466-114
Date Last Revised 19-01-2018
Type HUMAN PRESCRIPTION DRUG
Storage and handling Storage Conditions Store at 25°C (77°F); excursions permitted to 15° to 30° C (59° to 86° F) [see USP Controlled Room Temperature]. LEVO-T tablets should be protected from light and moisture.
Marketing authorisation holder Neolpharma, Inc.
Warnings WARNING: NOT FOR TREATMENT OF OBESITY OR FOR WEIGHT LOSS Thyroid hormones, including Levo-T, either alone or with other therapeutic agents, should not be used for the treatment of obesity or for weight loss. In euthyroid patients, doses within the range of daily hormonal requirements are ineffective for weight reduction. Larger doses may produce serious or even life threatening manifestations of toxicity, particularly when given in association with sympathomimetic amines such as those used for their anorectic effects [see Adverse Reactions (6), Drug Interactions (7.7), and Overdosage (10)] . WARNING: NOT FOR TREATMENT OF OBESITY OR FOR WEIGHT LOSS See full prescribing information for complete boxed warning Thyroid hormones, including Levo-T should not be used for the treatment of obesity or for weight loss. Doses beyond the range of daily hormonal requirements may produce serious or even life threatening manifestations of toxicity (6, 10).