Data from FDA - Curated by Marshall Pearce - Last updated 11 October 2017

Indication(s)

1 INDICATIONS AND USAGE FARESTON® is an estrogen agonist/antagonist indicated for the treatment of metastatic breast cancer in postmenopausal women with estrogen-receptor positive or unknown tumors. FARESTON® is an estrogen agonist/antagonist indicated for the treatment of metastatic breast cancer in postmenopausal women with estrogen-receptor positive or unknown tumors. (1)

Learning Zones

An epgonline.org Learning Zone (LZ) is an area of the site dedicated to providing detailed self-directed medical education about a disease, condition or procedure.

Communicating Metastatic Breast Cancer Learning Zone

Communicating Metastatic Breast Cancer Learning Zone

This learning zone offers a short overview of the challenges faced by both healthcare professionals and patient when communicating end-stage or metastatic cancer.

Chronic Lymphocytic Leukaemia (CLL)

Chronic Lymphocytic Leukaemia (CLL)

Refine your knowledge of chronic lymphocytic leukaemia (CLL) with information on pathophysiology, diagnosis, treatment options and more

+ 1 more

Breakthrough Cancer Pain Learning Zone

Breakthrough Cancer Pain Learning Zone

Watch video highlights from the BeCOn OWN 2017 event, including expert opinion, patient experience and panel discussions in the Breakthrough Cancer Pain Learning Zone.

Load more

Related Content

Advisory information

contraindications
4 CONTRAINDICATIONS Hypersensitivity to the drug (4.1) QT Prolongation, Hypokalemia, Hypomagnesemia (4.2) 4.1 Hypersensitivity to the Drug FARESTON is contraindicated in patients with known hypersensitivity to the drug. 4.2 QT Prolongation, Hypokalemia, Hypomagnesemia Toremifene should not be prescribed to patients with congenital/acquired QT prolongation (long QT syndrome), uncorrected hypokalemia, or uncorrected hypomagnesemia.
Adverse reactions
6 ADVERSE REACTIONS Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. Most common adverse reactions are hot flashes, sweating, nausea and vaginal discharge. (6.1) To report SUSPECTED ADVERSE REACTIONS, contact Kyowa Kirin, Inc. at 1-800-305-FARESTON (1-800-305-3273) or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. 6.1 Clinical Trials Experience Adverse drug reactions are principally due to the antiestrogenic actions of FARESTON and typically occur at the beginning of treatment. The incidences of the following eight clinical toxicities were prospectively assessed in the North American Study. The incidence reflects the toxicities that were considered by the investigator to be drug related or possibly drug related. North American Study FAR60 TAM20 n = 221 n = 215 Hot Flashes 35% 30% Sweating 20% 17% Nausea 14% 15% Vaginal Discharge 13% 16% Dizziness 9% 7% Edema 5% 5% Vomiting 4% 2% Vaginal Bleeding 2% 4% Approximately 1% of patients receiving FARESTON (n = 592) in the three controlled studies discontinued treatment as a result of adverse reactions (nausea and vomiting, fatigue, thrombophlebitis, depression, lethargy, anorexia, ischemic attack, arthritis, pulmonary embolism, and myocardial infarction). Serious adverse reactions occurring in at least 1% of patients receiving FARESTON in the three major trials are listed in the table below. Three prospective, randomized, controlled clinical studies (North American, Eastern European, and Nordic) were conducted. The patients were randomized to parallel groups receiving FARESTON 60 mg (FAR60) or tamoxifen 20 mg (TAM20) in the North American Study or tamoxifen 40 mg (TAM40) in the Eastern European and Nordic studies. The North American and Eastern European studies also included high-dose toremifene arms of 200 and 240 mg daily, respectively [see Clinical Studies (14)]. * Most of the ocular abnormalities were observed in the North American Study in which on-study and biannual ophthalmic examinations were performed. No cases of retinopathy were observed in any arm. ** Elevated defined as follows: North American Study: AST >100 IU/L; alkaline phosphatase >200 IU/L; bilirubin > 2 mg/dL. Eastern European and Nordic studies: AST, alkaline phosphatase, and bilirubin - WHO Grade 1 (1.25 times the upper limit of normal). Adverse Reactions North American Eastern European Nordic FAR60 TAM20 FAR60 TAM40 FAR60 TAM40 n=221(%) n=215(%) n=157(%) n=149(%) n=214(%) n=201(%) Cardiac Cardiac Failure 2 (1) 1 (<1) - 1 (<1) 2 (1) 3 (1.5) Myocardial Infarction 2 (1) 3 (1.5) 1 (<1) 2 (1) - 1 (<1) Arrhythmia - - - - 3 (1.5) 1 (<1) Angina Pectoris - - 1 (<1) - 1 (<1) 2 (1) Ocular* Cataracts 22 (10) 16 (7.5) - - - 5 (3) Dry Eyes 20 (9) 16 (7.5) - - - - Abnormal Visual Fields 8 (4) 10 (5) - - - 1 (<1) Corneal Keratopathy 4 (2) 2 (1) - - - - Glaucoma 3 (1.5) 2 (1) 1 (<1) - - 1 (<1) Abnormal Vision/Diplopia - - - - 3 (1.5) - Thromboembolic Pulmonary Embolism 4 (2) 2 (1) 1 (<1) - - 1 (<1) Thrombophlebitis - 2 (1) 1 (<1) 1 (<1) 4 (2) 3 (1.5) Thrombosis - 1 (<1) 1 (<1) - 3 (1.5) 4 (2) CVA/TIA 1 (<1) - - 1 (<1) 4 (2) 4 (2) Elevated Liver Tests** AST 11 (5) 4 (2) 30 (19) 22 (15) 32 (15) 35 (17) Alkaline Phosphatase 41 (19) 24 (11) 16 (10) 13 (9) 18 (8) 31 (15) Bilirubin 3 (1.5) 4 (2) 2 (1) 1 (<1) 2 (1) 3 (1.5) Hypercalcemia 6 (3) 6 (3) 1 (<1) - - - Other adverse reactions included leukopenia and thrombocytopenia, skin discoloration or dermatitis, constipation, dyspnea, paresis, tremor, vertigo, pruritus, anorexia, reversible corneal opacity (corneal verticulata), asthenia, alopecia, depression, jaundice, and rigors. The incidence of AST elevations was greater in the 200 and 240 mg FARESTON dose arms than in the tamoxifen arms. Higher doses of FARESTON were also associated with an increase in nausea. Approximately 4% of patients were withdrawn for toxicity from the high-dose FARESTON treatment arms. Reasons for withdrawal included hypercalcemia, abnormal liver function tests, and one case each of toxic hepatitis, depression, dizziness, incoordination, ataxia, blurry vision, diffuse dermatitis, and a constellation of symptoms consisting of nausea, sweating, and tremor. 6.2 Post-marketing Experience The following adverse reactions were identified during post approval use of FARESTON. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Adverse reactions reported during post approval use of FARESTON have been consistent with clinical trial experience. The most frequently reported adverse reactions related to FARESTON use since market introduction include hot flash, sweating, nausea, and vaginal discharge. Hepatotoxicity [see Warnings and Precautions (5.2) ] Risk of Uterine Malignancy [see Warnings and Precautions (5.4)]

Usage information

Dosing and administration
2 DOSAGE AND ADMINISTRATION The dosage of FARESTON is 60 mg, once daily, orally. Treatment is generally continued until disease progression is observed. 60 mg once daily, orally (2)
Use in special populations
8 USE IN SPECIFIC POPULATIONS Nursing Mothers: Discontinue drug or nursing taking into account the importance of the drug to the mother. (8.3) 8.1 Pregnancy Pregnancy Category D [see Warnings and Precautions (5.7).] Based on its mechanism of action in humans and findings of increased pregnancy loss and fetal malformation in animal studies, FARESTON can cause fetal harm when administered to a pregnant woman. Toremifene caused embryo-fetal toxicities at maternal doses that were lower than the 60 mg daily recommended human dose on a mg/m2 basis. There are no adequate and well-controlled studies in pregnant women using FARESTON. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to the fetus. In animal studies, toremifene crossed the placenta and accumulated in the rodent fetus. Administration of toremifene to pregnant rats during organogenesis at doses of approximately 6% the daily maximum recommended human dose of 60 mg (on a mg/m2 basis) resulted in signs of maternal toxicity and increased preimplantation loss, increased resorptions, reduced fetal weight, and fetal anomalies. Fetal anomalies include malformation of limbs, incomplete ossification, misshapen bones, ribs/spine anomalies, hydroureter, hydronephrosis, testicular displacement, and subcutaneous edema. Maternal toxicity may have contributed to these adverse embryo-fetal effects. Similar embryo-fetal toxicities occurred in rabbits that received toremifene at doses approximately 40% the daily recommended human dose of 60 mg (on a mg/m2 basis). Findings in rabbits included increased preimplantation loss, increased resorptions, and fetal anomalies, including incomplete ossification and anencephaly. Animal doses resulting in embryo-fetal toxicities were ≥1.0 mg/kg/day in rats and ≥1.25 mg/kg/day in rabbits. In rodent models of fetal reproductive tract development, toremifene produced inhibition of uterine development in female pups similar to effects seen with diethylstilbestrol (DES) and tamoxifen. The clinical relevance of these changes is not known. Neonatal rodent studies have not been conducted to assess the potential for toremifene to cause other DES-like effects in offspring (i.e., vaginal adenosis). Vaginal adenosis in animals occurred following treatment with other drugs of this class and has been observed in women exposed to diethylstilbestrol in utero. 8.3 Nursing Mothers It is not known if toremifene is excreted in human milk. Toremifene is excreted in the milk of lactating rats. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from FARESTON, a decision should be made to either discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother. 8.4 Pediatric Use There is no indication for use of FARESTON in pediatric patients. 8.5 Geriatric Use The pharmacokinetics of toremifene were studied in 10 healthy young males and 10 elderly females following a single 120 mg dose under fasting conditions. Increases in the elimination half-life (4.2 versus 7.2 days) and the volume of distribution (457 versus 627 L) of toremifene were seen in the elderly females without any change in clearance or AUC. The median ages in the three controlled studies ranged from 60 to 66 years. No significant age-related differences in FARESTON effectiveness or safety were noted. 8.6 Renal Impairment The pharmacokinetics of toremifene and N-demethyltoremifene were similar in normals and in patients with impaired kidney function. 8.7 Hepatic Impairment The mean elimination half-life of toremifene was increased by less than twofold in 10 patients with hepatic impairment (cirrhosis or fibrosis) compared to subjects with normal hepatic function. The pharmacokinetics of N-demethyltoremifene were unchanged in these patients. Ten patients on anticonvulsants (phenobarbital, clonazepam, phenytoin, and carbamazepine) showed a twofold increase in clearance and a decrease in the elimination half-life of toremifene. 8.8 Race The pharmacokinetics of toremifene in patients of different races has not been studied. Fourteen percent of patients in the North American Study were non-Caucasian. No significant race-related differences in FARESTON effectiveness or safety were noted.
Pregnancy and lactation
8.3 Nursing Mothers It is not known if toremifene is excreted in human milk. Toremifene is excreted in the milk of lactating rats. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from FARESTON, a decision should be made to either discontinue nursing or discontinue the drug, taking into account the importance of the drug to the mother.

Interactions

7 DRUG INTERACTIONS Drugs that decrease renal calcium excretion, e.g., thiazide diuretics, may increase the risk of hypercalcemia in patients receiving FARESTON. (7.1) Agents that prolong QT should be avoided. (7.2) Coadministration with a strong CYP3A4 inducer may result in a relevant decrease in FARESTON exposure and should be avoided. (7.3) Coadministration with a strong CYP3A4 inhibitor can result in a relevant increase in FARESTON exposure and should be avoided. (7.4) CYP2C9 substrates with a narrow therapeutic index such as warfarin or phenytoin with FARESTON should be used with caution and require careful monitoring. (7.6) 7.1 Drugs that Decrease Renal Calcium Excretion Drugs that decrease renal calcium excretion, e.g., thiazide diuretics, may increase the risk of hypercalcemia in patients receiving FARESTON. 7.2 Agents that Prolong QT The administration of FARESTON with agents that have demonstrated QT prolongation as one of their pharmacodynamic effects should be avoided. Should treatment with any of these agents be required, it is recommended that therapy with FARESTON be interrupted. If interruption of treatment with FARESTON is not possible, patients who require treatment with a drug that prolongs QT should be closely monitored for prolongation of the QT interval. Agents generally accepted to prolong QT interval include Class 1A (e.g., quinidine, procainamide, disopyramide) and Class III (e.g., amiodarone, sotalol, ibutilide, dofetilide) antiarrhythmics; certain antipsychotics (e.g., thioridazine, haloperidol); certain antidepressants (e.g., venlafaxine, amitriptyline); certain antibiotics (e.g., erythromycin, clarithromycin, levofloxacin, ofloxacin); and certain anti-emetics (e.g., ondansetron, granisetron). In patients at increased risk, electrocardiograms (ECGs) should be obtained and patients monitored as clinically indicated [see Boxed Warning and Warnings and Precautions (5.1)]. 7.3 Effect of Strong CYP3A4 Inducers on Toremifene Strong CYP3A4 enzyme inducers, such as dexamethasone, phenytoin, carbamazepine, rifampin, rifabutin, phenobarbital, St. John's Wort, lower the steady-state concentration of toremifene in serum. 7.4 Effect of Strong CYP3A4 Inhibitors on Toremifene In a study of 18 healthy subjects, 80 mg toremifene once daily coadministered with 200 mg of ketoconazole twice daily increased the toremifene Cmax and AUC by 1.4- and 2.9-fold, respectively. N-demethyltoremifene Cmax and AUC were reduced by 56% and 20%, respectively. The administration of FARESTON with agents that are strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, atazanavir, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin, and voriconazole) increase the steady-state concentration in serum and should be avoided. Grapefruit juice may also increase plasma concentrations of toremifene and should be avoided. Should treatment with any of these agents be required, it is recommended that therapy with FARESTON be interrupted. If interruption of treatment with FARESTON is not possible, patients who require treatment with a drug that strongly inhibits CYP3A4 should be closely monitored for prolongation of the QT interval [see Boxed Warning and Warnings and Precautions (5.1)]. 7.5 Effect of Toremifene on CYP3A4 Substrates In a study of 20 healthy subjects, 2 mg midazolam once daily (days 6 and 18) coadministered with toremifene as a 480 mg loading dose followed by 80 mg once daily for 16 days. Following coadministration on days 6 and 18 relevant increases in midazolam and α-hydroxymidazolam Cmax and AUC were not observed. Following coadministration on day 18 midazolam and α-hydroxymidazolam Cmax and AUC were reduced by less than 20%. Clinically relevant exposure changes in sensitive substrates due to inhibition or induction of CYP3A4 by toremifene appear unlikely. 7.6 Effect of Toremifene on CYP2C9 Substrates In a study of 20 healthy subjects, 500 mg tolbutamide once daily (days 7 and 19) coadministered with toremifene as a 480 mg loading dose followed by 80 mg once daily for 16 days. Following coadministration on days 7 and 19 plasma tolbutamide Cmax and AUC were increased by less than 30%. A reduction of similar magnitude was observed for hydroxytolbutamide and carboxytolbutamide Cmax and AUC. Toremifene is a weak inhibitor of CYP2C9. Concomitant use of CYP2C9 substrates with a narrow therapeutic index such as warfarin or phenytoin with FARESTON should be done with caution and requires careful monitoring (e.g., substrate concentrations (if possible), appropriate laboratory markers, and signs and symptoms of increased exposure).

More information

Category Value
Authorisation number NDA020497
Agency product number 2498Y783QT
Orphan designation No
Product NDC 42747-327
Date Last Revised 25-05-2017
Type HUMAN PRESCRIPTION DRUG
RXCUI 313428
Marketing authorisation holder KYOWA KIRIN, INC,
Warnings WARNING: QT PROLONGATION FARESTON has been shown to prolong the QTc interval in a dose- and concentration-related manner [see Clinical Pharmacology (12.2)]. Prolongation of the QT interval can result in a type of ventricular tachycardia called Torsade de pointes, which may result in syncope, seizure, and/or death. Toremifene should not be prescribed to patients with congenital/acquired QT prolongation, uncorrected hypokalemia or uncorrected hypomagnesemia. Drugs known to prolong the QT interval and strong CYP3A4 inhibitors should be avoided [see Warnings and Precautions (5.1)]. WARNING: QT PROLONGATION FARESTON has been shown to prolong the QTc interval in a dose- and concentration-related manner [see Clinical Pharmacology (12.2)]. Prolongation of the QT interval can result in a type of ventricular tachycardia called Torsade de pointes, which may result in syncope, seizure, and/or death. Toremifene should not be prescribed to patients with congenital/acquired QT prolongation, uncorrected hypokalemia or uncorrected hypomagnesemia. Drugs known to prolong the QT interval and strong CYP3A4 inhibitors should be avoided [see Warnings and Precautions (5.1)].