Data from FDA (Food and Drug Administration, USA) - Curated by Marshall Pearce - Last updated 07 November 2017

Indication(s)

INDICATIONS AND USAGE Ceftazidime for injection, USP is indicated for the treatment of patients with infections caused by susceptible strains of the designated organisms in the following diseases: 1. Lower Respiratory Tract Infections, including pneumonia, caused by Pseudomonas aeruginosa and other Pseudomonas spp.; Haemophilus influenzae, including ampicillin-resistant strains; Klebsiella spp.; Enterobacter spp.; Proteus mirabilis; Escherichia coli; Serratia spp.; Citrobacter spp.; Streptococcus pneumoniae; and Staphylococcus aureus (methicillin-susceptible strains). 2. Skin and Skin-Structure Infections caused by Pseudomonas aeruginosa; Klebsiella spp.; Escherichia coli; Proteus spp., including Proteus mirabilis and indole-positive Proteus; Enterobacter spp.; Serratia spp.; Staphylococcus aureus (methicillin-susceptible strains); and Streptococcus pyogenes (group A beta-hemolytic streptococci). 3. Urinary Tract Infections, both complicated and uncomplicated, caused by Pseudomonas aeruginosa; Enterobacter spp.; Proteus spp., including Proteus mirabilis and indole-positive Proteus; Klebsiella spp.; and Escherichia coli. 4. Bacterial Septicemia caused by Pseudomonas aeruginosa, Klebsiella spp., Haemophilus influenzae, Escherichia coli, Serratia spp., Streptococcus pneumoniae, and Staphylococcus aureus (methicillin-susceptible strains). 5. Bone and Joint Infections caused by Pseudomonas aeruginosa, Klebsiella spp., Enterobacter spp., and Staphylococcus aureus (methicillin-susceptible strains). 6. Gynecologic Infections, including endometritis, pelvic cellulitis, and other infections of the female genital tract caused by Escherichia coli. 7. Intra-abdominal Infections, including peritonitis caused by Escherichia coli, Klebsiella spp., and Staphylococcus aureus (methicillin-susceptible strains) and polymicrobial infections caused by aerobic and anaerobic organisms and Bacteroides spp. (many strains of Bacteroides fragilis are resistant). 8. Central Nervous System Infections, including meningitis, caused by Haemophilus influenzae and Neisseria meningitidis. Ceftazidime has also been used successfully in a limited number of cases of meningitis due to Pseudomonas aeruginosa and Streptococcus pneumoniae. Ceftazidime for injection, USP may be used alone in cases of confirmed or suspected sepsis. Ceftazidime has been used successfully in clinical trials as empiric therapy in cases where various concomitant therapies with other antibiotics have been used. Ceftazidime for injection, USP may also be used concomitantly with other antibiotics, such as aminoglycosides, vancomycin, and clindamycin; in severe and life-threatening infections; and in the immunocompromised patient. When such concomitant treatment is appropriate, prescribing information in the labeling for the other antibiotics should be followed. The dose depends on the severity of the infection and the patient’s condition. To reduce the development of drug-resistant bacteria and maintain the effectiveness of ceftazidime for injection, USP and other antibacterial drugs, ceftazidime for injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Learning Zones

An epgonline.org Learning Zone (LZ) is an area of the site dedicated to providing detailed self-directed medical education about a disease, condition or procedure.

Fluid Management

Fluid Management

Are you up-to-date with the latest evidence of effective procedures for fluid management?

+ 2 more

Hyperammonaemia

Hyperammonaemia

Hyperammonaemia can result in serious neurological damage or death. Could you recognise the signs and symptoms?

+ 2 more

Fabry Disease

Fabry Disease

Explore the pathophysiology and treatment options for Fabry disease, a deficiency of the lysosomal enzyme alpha-galactosidase A

Load more

Related Content

Advisory information

contraindications
CONTRAINDICATIONS Ceftazidime for injection is contraindicated in patients who have shown hypersensitivity to ceftazidime or the cephalosporin group of antibiotics.
Special warnings and precautions
PRECAUTIONS General High and prolonged serum ceftazidime concentrations can occur from usual dosages in patients with transient or persistent reduction of urinary output because of renal insufficiency. The total daily dosage should be reduced when ceftazidime is administered to patients with renal insufficiency (see DOSAGE AND ADMINISTRATION ). Elevated levels of ceftazidime in these patients can lead to seizures, encephalopathy, coma, asterixis, neuromuscular excitability, and myoclonia. Continued dosage should be determined by degree of renal impairment, severity of infection, and susceptibility of the causative organisms. As with other antibiotics, prolonged use of ceftazidime may result in overgrowth of nonsusceptible organisms. Repeated evaluation of the patient’s condition is essential. If superinfection occurs during therapy, appropriate measures should be taken. Inducible type I beta-lactamase resistance has been noted with some organisms (e.g., Enterobacter spp., Pseudomonas spp., and Serratia spp.). As with other extended-spectrum beta-lactam antibiotics, resistance can develop during therapy, leading to clinical failure in some cases. When treating infections caused by these organisms, periodic susceptibility testing should be performed when clinically appropriate. If patients fail to respond to monotherapy, an aminoglycoside or similar agent should be considered. Cephalosporins may be associated with a fall in prothrombin activity. Those at risk include patients with renal and hepatic impairment, or poor nutritional state, as well as patients receiving a protracted course of antimicrobial therapy. Prothrombin time should be monitored in patients at risk and exogenous vitamin K administered as indicated. Ceftazidime should be prescribed with caution in individuals with a history of gastrointestinal disease, particularly colitis. Distal necrosis can occur after inadvertent intra-arterial administration of ceftazidime. Prescribing ceftazidime for injection in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria. Information for Patients Patients should be counseled that antibacterial drugs, including ceftazidime for injection, should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When ceftazidime for injection is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may: (1) decrease the effectiveness of the immediate treatment, and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by ceftazidime for injection or other antibacterial drugs in the future. Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as 2 or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible. Drug Interactions Nephrotoxicity has been reported following concomitant administration of cephalosporins with aminoglycoside antibiotics or potent diuretics such as furosemide. Renal function should be carefully monitored, especially if higher dosages of the aminoglycosides are to be administered or if therapy is prolonged, because of the potential nephrotoxicity and ototoxicity of aminoglycoside antibiotics. Nephrotoxicity and ototoxicity were not noted when ceftazidime was given alone in clinical trials. Chloramphenicol has been shown to be antagonistic to beta-lactam antibiotics, including ceftazidime, based on in vitro studies and time kill curves with enteric gram-negative bacilli. Due to the possibility of antagonism in vivo, particularly when bactericidal activity is desired, this drug combination should be avoided. In common with other antibiotics, ceftazidime may affect the gut flora, leading to lower estrogen reabsorption and reduced efficacy of combined oral estrogen/progesterone contraceptives. Drug/Laboratory Test Interactions The administration of ceftazidime may result in a false-positive reaction for glucose in the urine when using CLINITEST® tablets, Benedict’s solution, or Fehling’s solution. It is recommended that glucose tests based on enzymatic glucose oxidase reactions (such as CLINISTIX®) be used. Carcinogenesis, Mutagenesis, Impairment of Fertility Long-term studies in animals have not been performed to evaluate carcinogenic potential. However, a mouse micronucleus test and an Ames test were both negative for mutagenic effects. Pregnancy Teratogenic Effects Pregnancy Category B. Reproduction studies have been performed in mice and rats at doses up to 40 times the human dose and have revealed no evidence of impaired fertility or harm to the fetus due to ceftazidime for injection. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed. Nursing Mothers Ceftazidime is excreted in human milk in low concentrations. Caution should be exercised when ceftazidime is administered to a nursing woman. Pediatric Use (see DOSAGE AND ADMINISTRATION ). Geriatric Use Of the 2,221 subjects who received ceftazidime in 11 clinical studies, 824 (37%) were 65 and older while 391 (18%) were 75 and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater susceptibility of some older individuals to drug effects cannot be ruled out. This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function (see DOSAGE AND ADMINISTRATION ).
Adverse reactions
ADVERSE REACTIONS Ceftazidime is generally well tolerated. The incidence of adverse reactions associated with the administration of ceftazidime was low in clinical trials. The most common were local reactions following IV injection and allergic and gastrointestinal reactions. Other adverse reactions were encountered infrequently. No disulfiram-like reactions were reported. The following adverse effects from clinical trials were considered to be either related to ceftazidime therapy or were of uncertain etiology: Local Effects, reported in fewer than 2% of patients, were phlebitis and inflammation at the site of injection (1 in 69 patients). Hypersensitivity Reactions, reported in 2% of patients, were pruritus, rash, and fever. Immediate reactions, generally manifested by rash and/or pruritus, occurred in 1 in 285 patients. Toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme have also been reported with cephalosporin antibiotics, including ceftazidime. Angioedema and anaphylaxis (bronchospasm and/or hypotension) have been reported very rarely. Gastrointestinal Symptoms, reported in fewer than 2% of patients, were diarrhea (1 in 78), nausea (1 in 156), vomiting (1 in 500), and abdominal pain (1 in 416). The onset of pseudomembranous colitis symptoms may occur during or after treatment (see WARNINGS ). Central Nervous System Reactions (fewer than 1%) included headache, dizziness, and paresthesia. Seizures have been reported with several cephalosporins, including ceftazidime. In addition, encephalopathy, coma, asterixis, neuromuscular excitability, and myoclonia have been reported in renally impaired patients treated with unadjusted dosing regimens of ceftazidime (see PRECAUTIONS, General ). Less Frequent Adverse Events (fewer than 1%) were candidiasis (including oral thrush) and vaginitis. Hematologic: Rare cases of hemolytic anemia have been reported. Laboratory Test Changes noted during clinical trials with ceftazidime were transient and included: eosinophilia (1 in 13), positive Coombs test without hemolysis (1 in 23), thrombocytosis (1 in 45), and slight elevations in one or more of the hepatic enzymes, aspartate aminotransferase (AST, SGOT) (1 in 16), alanine aminotransferase (ALT, SGPT) (1 in 15), LDH (1 in 18), GGT (1 in 19), and alkaline phosphatase (1 in 23). As with some other cephalosporins, transient elevations of blood urea, blood urea nitrogen, and/or serum creatinine were observed occasionally. Transient leukopenia, neutropenia, agranulocytosis, thrombocytopenia, and lymphocytosis were seen very rarely. To report SUSPECTED ADVERSE REACTIONS, contact WG Critical Care, LLC at 1-866-562-4708 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

Usage information

Dosing and administration
DOSAGE AND ADMINISTRATION Dosage The usual adult dosage is 1 gram administered intravenously or intramuscularly every 8 to 12 hours. The dosage and route should be determined by the susceptibility of the causative organisms, the severity of infection, and the condition and renal function of the patient. The guidelines for dosage of ceftazidime for injection are listed in Table 5. The following dosage schedule is recommended. Table 5. Recommended Dosage Schedule Dose Frequency Adults Usual recommended dosage 1 gram IV or IM q8hr to 12hr Uncomplicated urinary tract infections 250 mg IV or IM q12hr Bone and joint infections 2 grams IV q12hr Complicated urinary tract infections 500 mg IV or IM q8hr to 12hr Uncomplicated pneumonia; mild skin and skin-structure infections 500 mg to 1 gram IV or IM q8hr Serious gynecologic and intra-abdominal infections 2 grams IV q8hr Meningitis 2 grams IV q8hr Very severe life-threatening infections, especially in immunocompromised patients 2 grams IV q8hr Lung infections caused by Pseudomonas spp. in patients with cystic fibrosis with normal renal functionAlthough clinical improvement has been shown, bacteriologic cures cannot be expected in patients with chronic respiratory disease and cystic fibrosis. 30 to 50 mg/kg IV to a maximum of 6 grams per day q8hr Neonates (0 to 4 weeks) 30 mg/kg IV q12hr Infants and children (1 month to 12 years) 30 to 50 mg/kg IV to a maximum of 6 grams per dayThe higher dose should be reserved for immunocompromised pediatric patients or pediatric patients with cystic fibrosis or meningitis. q8hr Impaired Hepatic Function No adjustment in dosage is required for patients with hepatic dysfunction. Impaired Renal Function Ceftazidime is excreted by the kidneys, almost exclusively by glomerular filtration. Therefore, in patients with impaired renal function (glomerular filtration rate [GFR] <50 mL/min), it is recommended that the dosage of ceftazidime be reduced to compensate for its slower excretion. In patients with suspected renal insufficiency, an initial loading dose of 1 gram of ceftazidime may be given. An estimate of GFR should be made to determine the appropriate maintenance dosage. The recommended dosage is presented in Table 6. NOTE: IF THE DOSE RECOMMENDED IN TABLE 5 ABOVE IS LOWER THAN THAT RECOMMENDED FOR PATIENTS WITH RENAL INSUFFICIENCY AS OUTLINED IN TABLE 6, THE LOWER DOSE SHOULD BE USED. Table 6. Recommended Maintenance Dosages of Ceftazidime for Injection in Renal Insufficiency Creatinine Clearance (mL/min) Recommended Unit Dose of Ceftazidime for Injection Frequency of Dosing 50 to 31 1 gram q12hr 30 to 16 1 gram q24hr 15 to 6 500 mg q24hr <5 500 mg q48hr When only serum creatinine is available, the following formula (Cockcroft’s equation)5 may be used to estimate creatinine clearance. The serum creatinine should represent a steady state of renal function: Males: Creatinine clearance (mL/min) = Weight (kg) x (140 - age) __ 72 x serum creatinine (mg/dL) Females: 0.85 x male value In patients with severe infections who would normally receive 6 grams of ceftazidime for injection daily were it not for renal insufficiency, the unit dose given in the table above may be increased by 50% or the dosing frequency may be increased appropriately. Further dosing should be determined by therapeutic monitoring, severity of the infection, and susceptibility of the causative organism. In pediatric patients as for adults, the creatinine clearance should be adjusted for body surface area or lean body mass, and the dosing frequency should be reduced in cases of renal insufficiency. In patients undergoing hemodialysis, a loading dose of 1 gram is recommended, followed by 1 gram after each hemodialysis period. Ceftazidime for injection can also be used in patients undergoing intraperitoneal dialysis and continuous ambulatory peritoneal dialysis. In such patients, a loading dose of 1 gram of ceftazidime for injection may be given, followed by 500 mg every 24 hours. In addition to IV use, ceftazidime for injection can be incorporated in the dialysis fluid at a concentration of 250 mg for 2 L of dialysis fluid. Note: Generally ceftazidime for injection should be continued for 2 days after the signs and symptoms of infection have disappeared, but in complicated infections longer therapy may be required. Administration Ceftazidime for injection may be given intravenously or by deep IM injection into a large muscle mass such as the upper outer quadrant of the gluteus maximus or lateral part of the thigh. Intra-arterial administration should be avoided (see PRECAUTIONS ). Intramuscular Administration: For IM administration, ceftazidime for injection should be constituted with one of the following diluents: Sterile Water for Injection, Bacteriostatic Water for Injection, or 0.5% or 1% Lidocaine Hydrochloride Injection. Refer to Table 7. Intravenous Administration: The IV route is preferable for patients with bacterial septicemia, bacterial meningitis, peritonitis, or other severe or life-threatening infections, or for patients who may be poor risks because of lowered resistance resulting from such debilitating conditions as malnutrition, trauma, surgery, diabetes, heart failure, or malignancy, particularly if shock is present or pending. For direct intermittent IV administration, constitute ceftazidime for injection as directed in Table 7 with Sterile Water for Injection. Slowly inject directly into the vein over a period of 3 to 5 minutes or give through the tubing of an administration set while the patient is also receiving one of the compatible IV fluids (see COMPATIBILITY AND STABILITY ). For IV infusion, constitute the 1 gram, or 2 gram vial and add an appropriate quantity of the resulting solution to an IV container with one of the compatible IV fluids listed under the COMPATIBILITY AND STABILITY section. Intermittent IV infusion with a Y-type administration set can be accomplished with compatible solutions. However, during infusion of a solution containing ceftazidime, it is desirable to discontinue the other solution. Table 7. Preparation of Solutions of Ceftazidime for Injection Size Amount of Diluent to be Added (mL) Approximate Available Volume (mL) Approximate Ceftazidime Concentration (mg/mL) Intramuscular 1 gram vial 3 3.6 280 Intravenous 1 gram vial 2 gram vial 10 10 10.8To obtain a dose of 1 g, withdraw 10 mL from the vial following reconstitution. 11.5To obtain a dose of 2 g, withdraw 11.5 mL from the vial following reconstitution. 100 170 All vials of ceftazidime for injection as supplied are under reduced pressure. When ceftazidime for injection is dissolved, carbon dioxide is released and a positive pressure develops. For ease of use please follow the recommended techniques of constitution described on the detachable Instructions for Constitution section of this insert. Solutions of ceftazidime for injection, like those of most beta-lactam antibiotics, should not be added to solutions of aminoglycoside antibiotics because of potential interaction. However, if concurrent therapy with ceftazidime for injection and an aminoglycoside is indicated, each of these antibiotics can be administered separately to the same patient.
Pregnancy and lactation
Nursing Mothers Ceftazidime is excreted in human milk in low concentrations. Caution should be exercised when ceftazidime is administered to a nursing woman.

Interactions

Drug Interactions Nephrotoxicity has been reported following concomitant administration of cephalosporins with aminoglycoside antibiotics or potent diuretics such as furosemide. Renal function should be carefully monitored, especially if higher dosages of the aminoglycosides are to be administered or if therapy is prolonged, because of the potential nephrotoxicity and ototoxicity of aminoglycoside antibiotics. Nephrotoxicity and ototoxicity were not noted when ceftazidime was given alone in clinical trials. Chloramphenicol has been shown to be antagonistic to beta-lactam antibiotics, including ceftazidime, based on in vitro studies and time kill curves with enteric gram-negative bacilli. Due to the possibility of antagonism in vivo, particularly when bactericidal activity is desired, this drug combination should be avoided. In common with other antibiotics, ceftazidime may affect the gut flora, leading to lower estrogen reabsorption and reduced efficacy of combined oral estrogen/progesterone contraceptives.

More information

Category Value
Authorisation number ANDA062640
Agency product number 9M416Z9QNR
Orphan designation No
Product NDC 44567-235,44567-236
Date Last Revised 16-06-2017
Type HUMAN PRESCRIPTION DRUG
RXCUI 1659283
Marketing authorisation holder WG Critical Care, LLC