An estimated 310 million patients undergo major surgery each year (Weiser et al., 2015). In order to prevent and correct fluid deficits and further complications, intravenous fluids are commonly administered peri- and postoperatively. However, the practice of how clinicians administer these fluids is changing. With guidelines now recommending a restrictive intravenous fluid strategy rather than the more traditional liberal approach (Gustafsson et al., 2012; Feldheiser et al., 2016). However, limited data has raised questions about these guideline recommendations. In this study Myles et al. uncover what effect the two approaches have on disability-free survival, and a range of secondary outcomes, in patients undergoing major abdominal surgery.
Liberal intravenous-fluid therapy is often thought of as the more traditional approach to fluid management during surgery, where generous amounts of fluids are administered peri- and postoperatively. This approach can pose risks though, with up to 7 litres of fluid administered on the day of surgery, tissue oedema and weight gain of 3–6 kg can occur (Lobo et al., 2002; Brandstrup et al., 2003; Tambyraja et al., 2004; Gustafsson et al., 2012; Boland et al., 2013). It is also thought that excessive fluid administration may lead to increased risk of acute kidney injury (AKI), sepsis, pulmonary complications, and poor wound healing (Arieff, 1999; Lang et al., 2001; Ratner et al., 2005; Prowle et al., 2010).
One strategy to avoid these risks is through restrictive fluid therapy. Some smaller studies have shown that this restrictive approach led to fewer complications and shorter length of hospital stay (Lobo et al., 2002; Brandstrup et al., 2003; Nisanevichet al., 2005). Consensus statements have backed the findings of these studies with restricting fluid to achieve zero balance being a key component in the enhanced recovery after surgery (ERAS) pathways – a perioperative care guideline (Gustafsson et al., 2012; Feldheiser et al., 2016; National Institute for Health and Care Excellence, 2017).
However, fluid restriction may increase the risk of hypotension and decrease perfusion of vital organs including the kidneys leading to organ dysfunction (Arieff, 1999). As such, there is still some uncertainty over which approach is most effective, especially in patients undergoing major abdominal surgery where results have been inconclusive (Corcoran et al., 2012; Gustafsson et al., 2012; Ljungqvist et al., 2017; National Institute for Health and Care Excellence, 2017).
Hoping to discover the answer to this ongoing debate, the Restrictive versus Liberal Fluid Therapy in Major Abdominal Surgery (RELIEF) trial was conducted. This international study of 3000 patients with an increased risk of complications while undergoing major abdominal surgery, across 7 countries, randomly assigned patients to receive either liberal or restrictive fluid therapy.
Increased risk of complications included age of at least 70 years, or the presence of heart disease, diabetes, renal impairment, or morbid obesity. Fluid therapies were designed to reflect traditional practice for the liberal group and to achieve net zero fluid balance in the restrictive group. During surgery the median rate of fluid infusion was 6.5 mL/kg/hour for the restrictive group, followed by 0.9 mL/kg/hour on postoperative day 1. Compared to a median infusion rate of 10.9 mL/kg/hour for the liberal group, followed by 1.5 mL/kg/hour on postoperative day 1.
The primary endpoint of this study was disability-free survival, which was measured by the 12-item World Health Organization Disability Assessment Schedule (WHODAS) prior to surgery and 1 year after surgery. Interestingly, a significant difference wasn’t observed between the two groups, with a disability-free survival rate of 81.9% in the restrictive group vs. 82.3% in the liberal group (HR=1.05, 95% CI 0.88–1.24; p=0.61). Death or persistent disability was also analysed for the two groups, reflecting similar results for the two therapies.
A number of secondary endpoints were also measured including AKI, septic complications and renal replacement therapy (figure 1). Of these secondary endpoints, AKI was more frequently reported in the restrictive group than the liberal group (8.6% vs. 5%; p=<0.001). Each method of fluid management runs a risk of AKI as inadequate administration of fluid may result in renal hypoperfusion whereas excessive administration may result in renal interstitial oedema (Prowle et al., 2010; Kellum & Lameire, 2013). Therefore, it’s interesting to note that the risk of these outcomes was observed to be higher in the restrictive group in this patient population.
In addition, another believed risk of excessive fluid administration is impaired wound healing. However, although not statistically significant after adjustment for multiple comparisons, this study found the restrictive group to have a higher rate of surgical site infections than the liberal group (16.5% vs. 13.6%). This is possibly a result of wound or anastomotic hypoperfusion, as fluid restriction therapy increases the need for vasopressor therapy.
Figure 1: Secondary endpoints from the RELIEF study (Myles et al., 2018).
Although these results shed some light on the liberal versus restrictive argument, this evidence shouldn’t be used to support excessive fluid administration. In this study a modest liberal fluid regimen was found to safer than restrictive fluid therapy in preventing AKI, but no difference was seen for disability-free survival.
Further research is still required to build a stronger body of evidence for future guidelines.
Explore the Fluid Management Knowledge Centre to discover more about the role of fluid therapy in cardiac surgery, critically ill patients, liver cirrhosis, and more.
Catch-up on the debate surrounding hydroxyethyl starch use as we take you on an interactive journey through its changing fortunes. Do you think current restrictions will be enough to change clinical practice?
This position paper from the Italian Association for the Study of the Liver (AISF) and the Italian Society of Transfusion Medicine and Immunohaematology (SIMTI) reviews the evidence for the use of albumin in several settings related to liver cirrhosis.
This paper presents a meta-analysis to determine the impact of resuscitation with albumin on the morbidity and mortality of adult burn patients.
This meta-analysis examines whether the dosing of albumin affects outcomes in type 1 hepatorenal syndrome (HRS).
This review article explores the relationship between low albumin levels and acute kidney injury (AKI).
This meta-analysis pooled data from three large randomised controlled trials to determine whether early goal-directed therapy (EGDT) was an effective intervention for managing septic shock.
This systematic review and meta-analysis looked at the different mortality rates of various intravenous fluids and fluid protocols when used for resuscitation in sepsis.
This Chinese randomised controlled study explores the impact that a goal-directed fluid restriction (GDFR) protocol had on outcomes during anaesthesia for brain surgery.
This review paper examines the role of albumin in chronic liver disease, assessing the evidence for its use in several key clinical areas.
This matched cohort study aimed to determine whether a goal-directed fluid therapy (GDFT) intervention, delivered intraoperatively, would reduce post-operative morbidity in patients undergoing hip revision surgery.
This double-blinded, randomised controlled trial examined whether pre-operative administration of exogenous albumin affected rates of acute kidney injury (AKI).
This multicentre audit reviewed the records of 431 patients who had undergone major elective surgery. The authors sought to determine how well IV fluids were prescribed both intraoperatively and perioperatively when compared with current guidance.
This study explored fluid prescribing practices in intensive care – providing a picture of how fluid resuscitation is being managed internationally.
In this post-hoc, subgroup analysis (study 1) and prospective, single-centre nested cohort (study 2) from the SPLIT (0.9% saline vs. PL-148 for ICU fluid therapy) trial, the investigators hypothesised that patients receiving Plasma-Lyte 148 would require fewer blood products and have less post-operative bleeding than those receiving saline.
View an infographic of the European Association for the Study of the Liver (EASL) clinical practice guidelines on the management of decompensated cirrhosis.
This article is a review and summary of the current opinion of albumin in fluid management.
Following the European Medicines Agency’s (EMA) suspension of the marketing authorisations of hydroxyethyl starch (HES) solutions across the European Union (EMA, 2018), Roberts et al., have written an open letter addressed to the World Health Organization (WHO) Director General seeking support for the suspension of HES solutions and expanding it to a worldwide ban.
The Coordination Group for Mutual Recognition and Decentralised Procedures (CMDh) endorse the suspension of hydroxyethyl-starch (HES) solutions, due to serious risks of kidney injury and death in certain patient populations.
This retrospective, observational study used a propensity scoring system to match patients treated with saline with those given a balanced, calcium-free fluid.
Acute kidney injury (AKI) affects one-fifth of major surgery patients, increasing the risk of long-term mortality. This review paper discusses recent study data, discussing the best methods for preventing postoperative AKI.
Guidelines to promote the early recovery of patients undergoing major surgery recommend a restrictive intravenous-fluid strategy for abdominal surgery. However, the supporting evidence is limited, and there is concern about impaired organ perfusion.
The hypothesis that hypertonic fluid has a dual physiological role, increasing circulatory volume while administering minimal volumes and muting the pro-inflammatory response to injury and illness, may be appealing, but is it superior to isotonic fluids in practice?
A recent PRAC review has recommended suspension of marketing authorisations for HES solutions for infusion across the EU.
Cirrhosis of the liver is a leading cause of mortality. For patients with decompensated cirrhosis, long-term weekly human albumin administration can act as an effective disease-modifying treatment.
In 1896 Ernest Starling published his hypothesis for fluid exchange, whereby fluid exchange exists mainly in the capillaries through a process of plasma ultrafiltration across semipermeable membranes (Starling, 1896). But is this 19th century theory something of the past?
Long-term albumin treatment for ascites associated with cirrhosis has been debated in recent years, with mixed results reported for the treatment’s efficacy. In this non-randomised prospective study, Di Pascoli and colleagues question the benefits of long-term albumin in patients with liver cirrhosis and refractory ascites, focussing on survival and emergent hospitalisations. Could this be part of the solution to the ongoing challenge of ascites in cirrhosis?
The choice of fluid administered during cardiac surgery remains a debated topic, often focussed around colloid solutions containing albumin. Conflicting results from numerous studies have left questions over albumin safety and potential to be superior to crystalloids during surgery. Kingeter et al. hoped to achieve clarity on this controversial topic in a retrospective study of cardiac surgery outcomes over a 12-year period.
Patients admitted to intensive care are often haemodynamically unstable with fluid resuscitation therapy regularly used to overcome this. The use of small volume resuscitation with 20% albumin has historically been limited compared to standard fluid resuscitation with 4–5% albumin due to safety concerns, but could those concerns be misplaced? Read more about how the SWIPE trial has provided new insights into the possibilities of using small volume resuscitation within the ICU.
Alternatively login via
Acute and Advanced Heart Failure
Anticoagulation Therapy for Stroke Prevention
Fibrinogen Deficiency in Bleeding
Chronic Lymphocytic Leukaemia (CLL)
Back to epgonline.org