Albumin

A protein with a multitude of functions
Overview

The albumin molecule

Albumin distribution, metabolism and binding

Albumin in fluid homeostasis

Other functions of albumin
The albumin molecule
The albumin molecule

- Single polypeptide chain
 - 585 amino acids
 - 66 kDa molecular weight
- Negatively charged
- Non-glycosylated

Serum albumin. Reproduced with permission from David Goodsell & RCSB Protein Data Bank, 2013.

Albumin distribution, metabolism and binding
Albumin distribution

~350 g total\(^1\)

~40% intravascular\(^2\)

~60% extravascular\(^2\)

Albumin metabolism

- Up to 14 g of albumin is synthesized daily\(^1\)
- Site of synthesis:\(^1\)
 - Liver
- Regulators of synthesis:\(^1,2\)
 - Colloid osmotic pressure (COP)
 - Cortisol and thyroid hormone
- \(~4\%\) of the albumin pool is degraded daily\(^1\)

COP, colloid osmotic pressure
Albumin binding

- Many albumin functions are mediated by ligand binding
- Albumin is endowed with multiple specific binding sites

- Fatty acids
- Bilirubin
- Haem
- ROS
- Calcium
- Copper
- Iron
- Nitric oxide

- Tryptophan
- Glucocorticoids
- Thyroxine
- Vitamins
- Amyloid-β
- Endotoxin
- Drugs
- Contrast agents

Albumin bound to 7 arachidonic acid molecules. Reproduced with permission from David Goodsell & RCSB Protein Data Bank, 2013.

ROS, reactive oxygen species
Therapeutic drugs bound by albumin

NSAIDs
- Ibuprofen
- Naproxen
- Indomethacin
- Phenylbutazone
- Salicylates

Antimicrobials
- Cephalosporins
- Penicillins
- Sulfonamides
- Tetracyclins
- Vancomycin

Cardiovascular
- Digitoxin
- Hydralazine
- Propranolol
- Quinidine
- Verapamil

Anxiolytics
- Diazepam
- Midazolam
- Lorazepam
- Phenobarbital

Antidepressants
- Amitriptyline
- Chlorpromazine
- Imipramine

Chemotherapy
- Cisplatin
- Paclitaxel
- Tamoxifen

Anaesthetics
- Propofol
- Halothane
- Thiopentone

Diuretics
- Furosemide
- Thiazides
- Carbonic anhydrase inhibitors

Anti-epileptics
- Valproate
- Phenytoin

Other
- Warfarin
- Clofibrate
- Glipizide

NSAIDs, non-steroidal anti-inflammatory drugs
Albumin in fluid homeostasis
Albumin in fluid homeostasis

- Albumin supplies 80% of total plasma COP
- Albumin retards:
 - Fluid efflux from plasma
 - Oedema formation

Net filtration pressure (mm Hg)

- Arteriolar: 15 mm Hg
- Venular: -3 mm Hg

Arteriolar hydrostatic pressure gradient (mm Hg)

- 2 mm Hg COP
- 15 mm Hg arteriolar pressure
- 37 mm Hg interstitial COP

Venular hydrostatic pressure gradient (mm Hg)

- 2 mm Hg COP
- 3 mm Hg venular pressure
- 20 mm Hg interstitial COP

COP, colloid osmotic pressure
Other functions of albumin
Other functions of albumin

- Albumin is involved in numerous other functions, many due to binding, including:
 - Transport/delivery
 - Detoxification
 - Reservoir (i.e. provides storage) for signalling molecules and nitric oxide
 - Acid–base balance
 - Apoptosis
 - Cell proliferation
 - Oxidation–reduction
 - Immunomodulation

Fatty acid transport/delivery

- Fatty acids (FA) are essential for:
 - Energy metabolism
 - Synthesis of membrane phospholipids and regulatory mediators

- Albumin:
 - Binds and solubilizes FA
 - Is the main protein binding FA in extracellular fluids
 - Plasma albumin delivers FA to vascular endothelium
 - Interstitial albumin transports FA to target tissues

FA, fatty acids
van der Vusse. *Drug Metab Pharmacokinet* 2009; 24: 300–307
Detoxification of bilirubin

- The majority of circulating unconjugated bilirubin is bound to albumin
- Albumin solubilizes bilirubin and neutralizes its toxic effects
- Albumin transports bilirubin to the liver
- In the liver, bilirubin:
 - Dissociates at the sinusoidal surface of hepatocytes
 - Undergoes conjugation and excretion in bile

Serum albumin. Reproduced with permission from David Goodsell & RCSB Protein Data Bank, 2013.
Extracorporeal detoxification

- Accumulation of albumin-bound metabolites occurs in liver failure
- Albumin-bound substances in plasma are decreased by extracorporeal albumin dialysis including:
 - Bilirubin
 - Bile acids
 - Tryptophan
 - Middle- and short-chain FA
 - Aromatic amino acids
 - TNF-α
 - IL-6
 - Copper
 - Diazepam

FA, fatty acids; TNF, tumour necrosis factor; IL, interleukin
Nitric oxide reservoir

Nitric oxide (NO) has diverse actions, including:
- Vasodilation
- Platelet aggregation
- Neutrophil adhesion
- Superoxide production and removal

Plasma NO is mostly covalently bound to albumin
- S-Nitrosylated adduct (SNO-albumin) forms at cysteine 34

SNO-albumin is more stable than low-molecular weight S-Nitrosothiols

NO is released from the SNO-albumin reservoir as needed by:
- Transfer to low-molecular weight thiols
- SNO-albumin binding to albumin cell surface receptor
SNO-albumin in cardiopulmonary bypass

- In the ischaemia/reperfusion model, SNO-albumin increased:
 - Mean arterial pressure
 - Cardiac energetic reserve

SNO-albumin, S-nitrosylated adduct
Acid–base balance

- Stewart model of acid–base balance
- 3 independent variables govern acid–base balance:
 - pCO_2
 - Total concentration of weak acids (A_{TOT})
 - Strong ion difference (SID)
- Albumin is the main determinant of A_{TOT}

A_{TOT}, total concentration of weak acids; SID, strong ion difference
Apoptosis

- Albumin prevents apoptosis of proximal renal tubular cells
 - Effective at physiological albumin concentrations
- This activity is independent of both bound lipid and COP

Cell proliferation

- Albumin stimulates proliferation of proximal renal tubular cells
 - Effective at physiological albumin concentrations
- Maintains proximal tubular integrity/function
Oxidation–reduction

- Diverse oxidation–reduction reactions are affected by albumin
- Cysteine 34 of the albumin polypeptide chain
 - Participates reversibly in oxidation–reduction reactions
 - Provides 80% of plasma thiols
 - Major contributor to total plasma antioxidant capacity
- Binding to albumin can influence oxidation–reduction
 - Albumin binds and inactivates pro-oxidant Cu^{2+}
 - Unsaturated FA are protected from oxidation by binding to albumin
 - Albumin-bound bilirubin is endowed with antioxidant activity

Antioxidant activity

- Blockade by albumin of:
 - Cu$^{2+}$-mediated LDL oxidation
 - Free-radical-mediated haemolysis

LDL, low-density lipoprotein
Immunomodulation

• An immune response is central for:
 – Host response to infection
 – Damage repair

• But an overexuberant response can be harmful, for example:
 – SIRS after cardiac surgery
 – Excessive capillary permeability during shock

• Albumin:
 – Is free of the pro-inflammatory effects exhibited by other resuscitation fluids
 – Displays immunomodulatory activity

SIRS, Systemic Inflammatory Response Syndrome
Pro-inflammatory effects of resuscitation fluids

- Whole blood from volunteers diluted 75% in vitro with test fluids
- Crystalloids and artificial colloids showed significant pro-inflammatory effects
- No significant effect of 5% or 25% albumin

Prevention of haem-mediated delay in neutrophil apoptosis

- Haemolysis causes a release of haem
 - Frequent in cardiac surgery
- Haem is known to be pro-inflammatory and probiotic
- Haem mediates a delay in neutrophil apoptosis
 - This effect is blocked by albumin
- Therefore, the replacement of albumin in a bypass circuit may avert the pro-inflammatory and probiotic effects of haemolysis

Bundy et al, Am J Respir Crit Care Med 2010; 181: A2798
Host cell response to Gram-negative bacteria

- Albumin forms a complex with:
 - Lipopolysaccharide (LPS)
 - Soluble CD14 (sCD14)
- This complex acts on toll-like receptor 4
- IL-8 is generated
- Albumin is an essential facilitator of the response to endotoxin

LPS, lipopolysaccharide; sCD14, soluble CD14; IL-8, interleukin-8
Gioannini et al, J Biol Chem 2002; 277: 47818–47825
Conclusions

- Albumin is a central mediator of physiological homeostasis
 - Albumin maintains fluid balance by maintaining COP
- Albumin has numerous other functions, many due to binding, including:
 - Transport/delivery
 - Detoxification
 - Reservoir
 - Acid–base balance
 - Apoptosis
 - Cell proliferation
 - Oxidation–reduction
 - Immunomodulation
References (A-L)

• Bolitho C, et al. The anti-apoptotic activity of albumin for endothelium is mediated by a partially cryptic protein domain and reduced by inhibitors of G-coupled protein and PI-3 kinase, but is independent of radical scavenging or bound lipid. *J Vasc Res* 2007; 44: 313–24
• Bundy et al. Albumin inhibits heme mediated delay of spontaneous neutrophil apoptosis. *Am J Respir Crit Care Med* 2010; 181: A2798
• Ishima Y et al. Albumin as a nitric oxide-traffic protein: characterization, biochemistry and possible future therapeutic applications. *Drug Metab Pharmacokinet* 2009; 24: 308–17
• Lee YJ et al. Albumin-stimulated DNA synthesis is mediated by Ca2+/PKC as well as EGF receptor-dependent p44/42 MAPK and NF-kappaB signal pathways in renal proximal tubule cells. *Am J Physiol Renal Physiol* 2008; 294: F534–41
References (M-W)

- van der Vusse GJ. Albumin as fatty acid transporter. *Drug Metab Pharmacokinet* 2009; **24**: 300–7